# AIR QUALITY MONITORING AT MARSAXLOKK AND BIRŻEBBUĠA



OUR REF: ENV33164/D/13 CLIENT REF: GN/DPS/2013/2011

REPORT 16 March 2014



# Quality Assurance AIR QUALITY MONITORING AT MARSAXLOKK AND BIRŻEBBUĠA

## Client: Enemalta

### Revision Schedule

| Version | Report 16                     |
|---------|-------------------------------|
| Date    | March 2014                    |
| Author  | Eng. Ines Munoz – ambiente sc |

## Amendment Record

| Issue   | Amendment | Date       |
|---------|-----------|------------|
| Issue 1 | Report 16 | March 2014 |

## Signatures

| Approval Level    | Name                                      | Signature |
|-------------------|-------------------------------------------|-----------|
| Internal Approval | Eng. Francesca Tamburini – ambiente sc    |           |
|                   | Ruth DeBrincat Tabone – AIS Environmental |           |
| Internal Approval | Eng. Lorenzo Tenerani – ambiente sc       |           |

# **Table of Contents**

| Qua  | ality         | Assu  | rance                                                         | i    |
|------|---------------|-------|---------------------------------------------------------------|------|
| Tab  | ole of        | f Con | itents                                                        | ii   |
| List | of F          | igure | 25                                                            | ix   |
| List | ofT           | ables | 5                                                             | .xiv |
| 1.   | Int           | rodu  | ction                                                         | 1    |
| 1    | L. <b>1</b> . | San   | npling Points                                                 | 2    |
| 1    | L. <b>2</b> . | Тес   | hnical Specifications                                         | 5    |
|      | 1.2           | .1.   | Duration of Monitoring                                        | 5    |
|      | 1.2           | .2.   | Monitoring parameters and Time Schedule                       | 5    |
| 1    | L. <b>3</b> . | Sta   | ndards and Guidelines                                         | 7    |
| 1    | .4.           | Me    | thodology for the Identification of Saharan Dust              | 7    |
| 1    | L.5.          | Mo    | nitoring Procedure                                            | 9    |
| 1    | L.6.          | Ma    | intenance Operations                                          | . 10 |
| 1    | L. <b>7</b> . | Lab   | oratory Activities                                            | .11  |
|      | 1.7           | .1.   | Preparation of the Clean Filters                              | .11  |
|      | 1.7           | .2.   | Analysis of the Exposed Filters                               | .11  |
| 2.   | Res           | sults |                                                               | .13  |
| 2    | 2.1.          | Rep   | port 1                                                        | .13  |
|      | 2.1           | 1.    | Marsaxlokk – PM <sub>10</sub> and PM <sub>2.5</sub>           | .14  |
|      | 2.1           | 2.    | Birżebbuġa – $PM_{10}$ and $PM_{2.5}$                         | .15  |
|      | 2.1           | 3.    | Marsaxlokk – PM <sub>10</sub> and PM <sub>2.5</sub> histogram | .16  |
|      | 2.1           | 4.    | Birżebbuġa – $PM_{10}$ and $PM_{2.5}$ histogram               | .17  |
|      | 2.1           | 5.    | PM <sub>10</sub> Comparison                                   | .18  |
|      | 2.1           | 6.    | PM <sub>2.5</sub> Comparison                                  | .19  |
| 2    | 2.2.          | Rep   | oort 2                                                        | . 20 |
|      | 2.2           | .1.   | Marsaxlokk - $PM_{10}$ and $PM_{2.5}$                         | .21  |
|      | 2.2           | .2.   | Birżebbuġa - $PM_{10}$ and $PM_{2.5}$                         | .22  |
|      | 2.2           | .3.   | Marsaxlokk – PM <sub>10</sub> vs PM <sub>2.5</sub> histogram  | .23  |
|      | 2.2           | .4.   | Birżebbuġa – PM <sub>10</sub> vs PM <sub>2.5</sub> histogram  | .24  |
|      | 2.2           | .5.   | PM <sub>10</sub> comparison                                   | .25  |
|      | 2.2           | .6.   | PM <sub>2.5</sub> comparison                                  | .26  |
| 2    | 2.3.          | Rep   | oort 3                                                        | .27  |

#### AIR QUALITY MONITORING AT MARSAXLOKK AND BIRŻEBBUĠA

| 2.3.1.  | Marsaxlokk - $PM_{10}$ and $PM_{2.5}$                        | 28 |
|---------|--------------------------------------------------------------|----|
| 2.3.2.  | Birżebbuġa - $PM_{10}$ and $PM_{2.5}$                        | 29 |
| 2.3.3.  | Marsaxlokk – PM <sub>10</sub> vs PM <sub>2.5</sub> histogram | 30 |
| 2.3.4.  | Birżebbuġa – PM <sub>10</sub> vs PM <sub>2.5</sub> histogram | 31 |
| 2.3.5.  | PM <sub>2.5</sub> comparison                                 | 32 |
| 2.4. Re | port 4                                                       | 33 |
| 2.4.1.  | Marsaxlokk - $PM_{10}$ and $PM_{2.5}$                        | 34 |
| 2.4.2.  | Birżebbuġa - $PM_{10}$ and $PM_{2.5}$                        | 35 |
| 2.4.3.  | Marsaxlokk – PM <sub>10</sub> vs PM <sub>2.5</sub> histogram | 36 |
| 2.4.4.  | Birżebbuġa – PM <sub>10</sub> vs PM <sub>2.5</sub> histogram | 37 |
| 2.4.5.  | PM <sub>2.5</sub> comparison                                 |    |
| 2.5. Re | port 5                                                       |    |
| 2.5.1.  | Marsaxlokk - PM <sub>10</sub> and PM <sub>2.5</sub>          | 40 |
| 2.5.2.  | Birżebbuġa - $PM_{10}$ and $PM_{2.5}$                        | 41 |
| 2.5.3.  | Marsaxlokk – PM <sub>10</sub> vs PM <sub>2.5</sub> histogram | 42 |
| 2.5.4.  | Birżebbuġa – PM <sub>10</sub> vs PM <sub>2.5</sub> histogram | 43 |
| 2.5.5.  | PM <sub>10</sub> comparison                                  | 44 |
| 2.5.6.  | PM <sub>2.5</sub> comparison                                 | 45 |
| 2.6. Re | port 6                                                       | 46 |
| 2.6.1.  | Marsaxlokk - PM <sub>10</sub> and PM <sub>2.5</sub>          | 47 |
| 2.6.2.  | Birżebbuġa - $PM_{10}$ and $PM_{2.5}$                        | 48 |
| 2.6.3.  | Marsaxlokk – PM <sub>10</sub> vs PM <sub>2.5</sub> histogram | 49 |
| 2.6.4.  | Birżebbuġa – PM <sub>10</sub> vs PM <sub>2.5</sub> histogram | 50 |
| 2.6.5.  | PM <sub>10</sub> comparison                                  | 51 |
| 2.6.6.  | PM <sub>2.5</sub> comparison                                 | 52 |
| 2.7. M  | etal Analysis                                                | 53 |
| 2.7.1.  | October 2013                                                 | 53 |
| 2.8. Re | port 7                                                       | 55 |
| 2.8.1.  | Marsaxlokk - $PM_{10}$ and $PM_{2.5}$                        | 56 |
| 2.8.2.  | Birżebbuġa - $PM_{10}$ and $PM_{2.5}$                        | 57 |
| 2.8.3.  | Marsaxlokk – PM <sub>10</sub> vsPM <sub>2.5</sub> histogram  | 58 |
| 2.8.4.  | Birżebbuġa – $PM_{10}vsPM_{2.5}$ histogram                   | 59 |
| 2.8.5.  | PM <sub>10</sub> comparison                                  | 60 |
| 2.8.6.  | PM <sub>2.5</sub> comparison                                 | 61 |

| 2.8.  | 7.   | Quantification of African dust                                                           | 62  |
|-------|------|------------------------------------------------------------------------------------------|-----|
| 2.8.  | 8.   | $Marsaxlokk-PM_{10}\ concentration\ after\ substracting\ Saharan\ dust\ contribution\$   | 65  |
| 2.8.  | 9.   | Birżebbuġa – PM <sub>10</sub> concentration after substracting Saharan dust contribution | 66  |
| 2.9.  | Rep  | ort 8                                                                                    | 67  |
| 2.10. | R    | eport 9                                                                                  | 68  |
| 2.10  | 0.1. | Marsaxlokk - PM <sub>10</sub> and PM <sub>2.5</sub>                                      | 69  |
| 2.10  | ).2. | Birżebbuġa - $PM_{10}$ and $PM_{2.5}$                                                    | 70  |
| 2.10  | ).3. | Marsaxlokk – PM <sub>10</sub> vsPM <sub>2.5</sub> histogram                              | 71  |
| 2.10  | ).4. | Birżebbuġa – PM <sub>10</sub> vsPM <sub>2.5</sub> histogram                              | 72  |
| 2.10  | ).5. | PM <sub>10</sub> comparison                                                              | 73  |
| 2.10  | 0.6. | PM <sub>2.5</sub> comparison                                                             | 74  |
| 2.11. | R    | eport 10                                                                                 | 75  |
| 2.11  | 1.1. | Marsaxlokk - PM <sub>10</sub> and PM <sub>2.5</sub>                                      | 76  |
| 2.11  | 1.2. | Birżebbuġa - $PM_{10}$ and $PM_{2.5}$                                                    | 77  |
| 2.11  | 1.3. | Marsaxlokk – PM <sub>10</sub> vsPM <sub>2.5</sub> histogram                              | 78  |
| 2.11  | 1.4. | Birżebbuġa – PM <sub>10</sub> vsPM <sub>2.5</sub> histogram                              | 79  |
| 2.11  | 1.5. | PM <sub>10</sub> comparison                                                              | 80  |
| 2.11  | 1.6. | PM <sub>2.5</sub> comparison                                                             | 81  |
| 2.12. | R    | eport 11                                                                                 | 82  |
| 2.12  | 2.1. | Marsaxlokk - PM <sub>10</sub> and PM <sub>2.5</sub>                                      | 83  |
| 2.12  | 2.2. | Birżebbuġa - $PM_{10}$ and $PM_{2.5}$                                                    | 84  |
| 2.12  | 2.3. | $Marsaxlokk - PM_{10}vsPM_{2.5} histogram$                                               | 85  |
| 2.12  | 2.4. | Birżebbuġa – $PM_{10}vsPM_{2.5}$ histogram                                               | 86  |
| 2.12  | 2.5. | PM <sub>10</sub> comparison                                                              | 87  |
| 2.12  | 2.6. | PM <sub>2.5</sub> comparison                                                             | 88  |
| 2.12  | 2.7. | Quantification of African dust                                                           | 89  |
| 2.13. | R    | eport 12                                                                                 | 93  |
| 2.13  | 3.1. | Marsaxlokk - $PM_{10}$ and $PM_{2.5}$                                                    | 94  |
| 2.13  | 3.2. | Birżebbuġa - $PM_{10}$ and $PM_{2.5}$                                                    | 95  |
| 2.13  | 3.3. | $Marsaxlokk - PM_{10}vsPM_{2.5} histogram$                                               | 96  |
| 2.13  | 3.4. | Birżebbuġa – $PM_{10}vsPM_{2.5}$ histogram                                               | 97  |
| 2.13  | 3.5. | PM <sub>10</sub> comparison                                                              | 98  |
| 2.13  | 3.6. | PM <sub>2.5</sub> comparison                                                             | 99  |
| 2.13  | 3.7. | Quantification of African dust                                                           | 100 |

#### AIR QUALITY MONITORING AT MARSAXLOKK AND BIRŻEBBUĠA

| 2.14. Re                                                                                                                                                                                                                                                   | port 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 104                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| 2.14.1.                                                                                                                                                                                                                                                    | Marsaxlokk - PM <sub>10</sub> and PM <sub>2.5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                             | 105                                                                                                   |
| 2.14.2.                                                                                                                                                                                                                                                    | Birżebbuġa - $PM_{10}$ and $PM_{2.5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 106                                                                                                   |
| 2.14.3.                                                                                                                                                                                                                                                    | Marsaxlokk – PM <sub>10</sub> vsPM <sub>2.5</sub> histogram                                                                                                                                                                                                                                                                                                                                                                                                                                     | 107                                                                                                   |
| 2.14.4.                                                                                                                                                                                                                                                    | Birżebbuġa – $PM_{10}vsPM_{2.5}$ histogram                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 108                                                                                                   |
| 2.14.5.                                                                                                                                                                                                                                                    | PM <sub>10</sub> comparison                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109                                                                                                   |
| 2.14.6.                                                                                                                                                                                                                                                    | PM <sub>2.5</sub> comparison                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 110                                                                                                   |
| 2.14.7.                                                                                                                                                                                                                                                    | Quantification of African dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 111                                                                                                   |
| 2.15. Re                                                                                                                                                                                                                                                   | port 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 115                                                                                                   |
| 2.15.1.                                                                                                                                                                                                                                                    | Marsaxlokk - PM <sub>10</sub> and PM <sub>2.5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                             | 116                                                                                                   |
| 2.15.2.                                                                                                                                                                                                                                                    | Birżebbuġa - $PM_{10}$ and $PM_{2.5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 117                                                                                                   |
| 2.15.3.                                                                                                                                                                                                                                                    | $Marsaxlokk - PM_{10}vsPM_{2.5} histogram$                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 118                                                                                                   |
| 2.15.4.                                                                                                                                                                                                                                                    | Birżebbuġa – $PM_{10}vsPM_{2.5}$ histogram                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119                                                                                                   |
| 2.15.5.                                                                                                                                                                                                                                                    | PM <sub>10</sub> comparison                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120                                                                                                   |
| 2.15.6.                                                                                                                                                                                                                                                    | PM <sub>2.5</sub> comparison                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 121                                                                                                   |
| 2.15.7.                                                                                                                                                                                                                                                    | Quantification of African dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 122                                                                                                   |
| 2.16. M                                                                                                                                                                                                                                                    | etal Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 126                                                                                                   |
|                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                       |
| 2.16.1.                                                                                                                                                                                                                                                    | February 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 126                                                                                                   |
|                                                                                                                                                                                                                                                            | February 2014<br>port 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                       |
|                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 128                                                                                                   |
| 2.17. Re                                                                                                                                                                                                                                                   | port 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 128<br>129                                                                                            |
| 2.17. Re<br>2.17.1.                                                                                                                                                                                                                                        | port 15<br>Marsaxlokk - PM <sub>10</sub> and PM <sub>2.5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                  | 128<br>129<br>130                                                                                     |
| 2.17. Re<br>2.17.1.<br>2.17.2.                                                                                                                                                                                                                             | port 15<br>Marsaxlokk - PM <sub>10</sub> and PM <sub>2.5</sub><br>Birżebbuġa - PM <sub>10</sub> and PM <sub>2.5</sub>                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                       |
| 2.17. Re<br>2.17.1.<br>2.17.2.<br>2.17.3.                                                                                                                                                                                                                  | port 15<br>Marsaxlokk - PM <sub>10</sub> and PM <sub>2.5</sub><br>Birżebbuġa - PM <sub>10</sub> and PM <sub>2.5</sub><br>Marsaxlokk – PM <sub>10</sub> vsPM <sub>2.5</sub> histogram                                                                                                                                                                                                                                                                                                            | 128<br>129<br>130<br>131<br>132                                                                       |
| 2.17. Re<br>2.17.1.<br>2.17.2.<br>2.17.3.<br>2.17.4.                                                                                                                                                                                                       | port 15<br>Marsaxlokk - PM <sub>10</sub> and PM <sub>2.5</sub><br>Birżebbuġa - PM <sub>10</sub> and PM <sub>2.5</sub><br>Marsaxlokk – PM <sub>10</sub> vsPM <sub>2.5</sub> histogram<br>Birżebbuġa – PM <sub>10</sub> vsPM <sub>2.5</sub> histogram                                                                                                                                                                                                                                             | 128<br>129<br>130<br>131<br>132<br>133                                                                |
| 2.17. Re<br>2.17.1.<br>2.17.2.<br>2.17.3.<br>2.17.4.<br>2.17.1.<br>2.17.2.                                                                                                                                                                                 | port 15<br>Marsaxlokk - PM <sub>10</sub> and PM <sub>2.5</sub><br>Birżebbuġa - PM <sub>10</sub> and PM <sub>2.5</sub><br>Marsaxlokk – PM <sub>10</sub> vsPM <sub>2.5</sub> histogram<br>Birżebbuġa – PM <sub>10</sub> vsPM <sub>2.5</sub> histogram<br>PM <sub>10</sub> comparison                                                                                                                                                                                                              | 128<br>129<br>130<br>131<br>131<br>132<br>133<br>134                                                  |
| 2.17. Re<br>2.17.1.<br>2.17.2.<br>2.17.3.<br>2.17.4.<br>2.17.1.<br>2.17.2.                                                                                                                                                                                 | port 15<br>Marsaxlokk - PM <sub>10</sub> and PM <sub>2.5</sub><br>Birżebbuġa - PM <sub>10</sub> and PM <sub>2.5</sub><br>Marsaxlokk – PM <sub>10</sub> vsPM <sub>2.5</sub> histogram<br>Birżebbuġa – PM <sub>10</sub> vsPM <sub>2.5</sub> histogram<br>PM <sub>10</sub> comparison<br>PM <sub>2.5</sub> comparison                                                                                                                                                                              | 128<br>129<br>130<br>131<br>132<br>133<br>134<br>135                                                  |
| <ul> <li>2.17. Re</li> <li>2.17.1.</li> <li>2.17.2.</li> <li>2.17.3.</li> <li>2.17.4.</li> <li>2.17.1.</li> <li>2.17.2.</li> <li>2.18. Re</li> </ul>                                                                                                       | port 15<br>Marsaxlokk - PM <sub>10</sub> and PM <sub>2.5</sub><br>Birżebbuġa - PM <sub>10</sub> and PM <sub>2.5</sub><br>Marsaxlokk – PM <sub>10</sub> vsPM <sub>2.5</sub> histogram<br>Birżebbuġa – PM <sub>10</sub> vsPM <sub>2.5</sub> histogram<br>PM <sub>10</sub> comparison<br>PM <sub>2.5</sub> comparison                                                                                                                                                                              | 128<br>129<br>130<br>131<br>132<br>133<br>134<br>135<br>136                                           |
| <ul> <li>2.17. Re</li> <li>2.17.1.</li> <li>2.17.2.</li> <li>2.17.3.</li> <li>2.17.4.</li> <li>2.17.1.</li> <li>2.17.2.</li> <li>2.18. Re</li> <li>2.18.1.</li> </ul>                                                                                      | port 15<br>Marsaxlokk - PM <sub>10</sub> and PM <sub>2.5</sub><br>Birżebbuġa - PM <sub>10</sub> and PM <sub>2.5</sub><br>Marsaxlokk – PM <sub>10</sub> vsPM <sub>2.5</sub> histogram<br>Birżebbuġa – PM <sub>10</sub> vsPM <sub>2.5</sub> histogram<br>PM <sub>10</sub> comparison<br>PM <sub>2.5</sub> comparison<br>port 16<br>Marsaxlokk - PM <sub>10</sub> and PM <sub>2.5</sub>                                                                                                            | 128<br>129<br>130<br>131<br>132<br>133<br>133<br>134<br>135<br>136<br>137                             |
| <ul> <li>2.17. Re</li> <li>2.17.1.</li> <li>2.17.2.</li> <li>2.17.3.</li> <li>2.17.4.</li> <li>2.17.1.</li> <li>2.17.2.</li> <li>2.18. Re</li> <li>2.18.1.</li> <li>2.18.2.</li> </ul>                                                                     | port 15<br>Marsaxlokk - PM <sub>10</sub> and PM <sub>2.5</sub><br>Birżebbuġa - PM <sub>10</sub> and PM <sub>2.5</sub><br>Marsaxlokk – PM <sub>10</sub> vsPM <sub>2.5</sub> histogram<br>Birżebbuġa – PM <sub>10</sub> vsPM <sub>2.5</sub> histogram<br>PM <sub>10</sub> comparison<br>PM <sub>2.5</sub> comparison<br>port 16<br>Marsaxlokk - PM <sub>10</sub> and PM <sub>2.5</sub><br>Birżebbuġa - PM <sub>10</sub> and PM <sub>2.5</sub>                                                     | 128<br>129<br>130<br>131<br>132<br>133<br>133<br>134<br>135<br>136<br>137<br>138                      |
| <ul> <li>2.17. Re</li> <li>2.17.1.</li> <li>2.17.2.</li> <li>2.17.3.</li> <li>2.17.4.</li> <li>2.17.1.</li> <li>2.17.2.</li> <li>2.18. Re</li> <li>2.18.1.</li> <li>2.18.2.</li> <li>2.18.3.</li> </ul>                                                    | Marsaxlokk - PM <sub>10</sub> and PM <sub>2.5</sub><br>Birżebbuġa - PM <sub>10</sub> and PM <sub>2.5</sub><br>Marsaxlokk – PM <sub>10</sub> vsPM <sub>2.5</sub> histogram<br>Birżebbuġa – PM <sub>10</sub> vsPM <sub>2.5</sub> histogram<br>PM <sub>10</sub> comparison<br>PM <sub>2.5</sub> comparison<br>port 16<br>Marsaxlokk - PM <sub>10</sub> and PM <sub>2.5</sub><br>Birżebbuġa - PM <sub>10</sub> and PM <sub>2.5</sub><br>Marsaxlokk – PM <sub>10</sub> vsPM <sub>2.5</sub> histogram | 128<br>129<br>130<br>131<br>132<br>133<br>134<br>135<br>136<br>137<br>138<br>139                      |
| <ul> <li>2.17. Re</li> <li>2.17.1.</li> <li>2.17.2.</li> <li>2.17.3.</li> <li>2.17.4.</li> <li>2.17.1.</li> <li>2.17.2.</li> <li>2.18. Re</li> <li>2.18.1.</li> <li>2.18.2.</li> <li>2.18.3.</li> <li>2.18.4.</li> </ul>                                   | port 15<br>Marsaxlokk - $PM_{10}$ and $PM_{2.5}$<br>Birżebbuġa - $PM_{10}$ and $PM_{2.5}$<br>Marsaxlokk – $PM_{10}vsPM_{2.5}$ histogram<br>Birżebbuġa – $PM_{10}vsPM_{2.5}$ histogram<br>$PM_{10}$ comparison<br>$PM_{2.5}$ comparison<br>port 16<br>Marsaxlokk - $PM_{10}$ and $PM_{2.5}$<br>Birżebbuġa - $PM_{10}$ and $PM_{2.5}$<br>Birżebbuġa - $PM_{10}vsPM_{2.5}$ histogram<br>Birżebbuġa – $PM_{10}vsPM_{2.5}$ histogram                                                                 | 128<br>129<br>130<br>131<br>132<br>133<br>134<br>135<br>136<br>137<br>138<br>139<br>140               |
| <ul> <li>2.17. Re</li> <li>2.17.1.</li> <li>2.17.2.</li> <li>2.17.3.</li> <li>2.17.4.</li> <li>2.17.1.</li> <li>2.17.2.</li> <li>2.18. Re</li> <li>2.18.1.</li> <li>2.18.2.</li> <li>2.18.4.</li> <li>2.18.1.</li> <li>2.18.1.</li> <li>2.18.2.</li> </ul> | port 15<br>Marsaxlokk - $PM_{10}$ and $PM_{2.5}$<br>Birżebbuġa - $PM_{10}$ and $PM_{2.5}$<br>Marsaxlokk – $PM_{10}vsPM_{2.5}$ histogram<br>Birżebbuġa – $PM_{10}vsPM_{2.5}$ histogram<br>$PM_{10}$ comparison<br>$PM_{2.5}$ comparison<br>port 16<br>Marsaxlokk - $PM_{10}$ and $PM_{2.5}$<br>Birżebbuġa - $PM_{10}$ and $PM_{2.5}$<br>Birżebbuġa - $PM_{10}vsPM_{2.5}$ histogram<br>Birżebbuġa - $PM_{10}vsPM_{2.5}$ histogram<br>$PM_{10}$ comparison                                         | 128<br>129<br>130<br>131<br>132<br>133<br>133<br>134<br>135<br>136<br>137<br>138<br>139<br>140<br>141 |

| 2.19.1. Analysis for the Identification of Saharan Dust | 142 |
|---------------------------------------------------------|-----|
| 2.20. OCTOBER                                           | 164 |
| 2.20.1. Analysis for the Identification of Saharan Dust | 164 |
| 2.21. NOVEMBER                                          |     |
| 2.21.1. Analysis for the Identification of Saharan Dust |     |
| 2.22. JANUARY                                           | 192 |
| 2.22.1. Analysis for the Identification of Saharan Dust | 192 |
| 2.23. FEBRUARY                                          | 242 |
| 2.23.1. Analysis for the Identification of Saharan Dust | 242 |
| 2.24. MARCH                                             |     |
| 2.24.1. Analysis for the Identification of Saharan Dust |     |
| ANNEX B – SAMPLING DETAILS                              | 293 |
| Marsaxlokk – PM <sub>10</sub> Sampler Report 1          | 294 |
| Marsaxlokk – PM <sub>2.5</sub> Sampler Report 1         | 296 |
| Birżebbuġa – PM10 Sampler Report 1                      | 298 |
| Birżebbuġa – PM <sub>2.5</sub> Sampler Report 1         |     |
| Marsaxlokk – PM <sub>10</sub> Sampler Report 2          |     |
| Marsaxlokk – PM <sub>2.5</sub> Sampler Report 2         |     |
| Birżebbuġa – PM <sub>10</sub> Sampler Report 2          |     |
| Birżebbuġa – PM <sub>2.5</sub> Sampler Report 2         |     |
| Marsaxlokk – PM <sub>10</sub> Sampler Report 3          | 310 |
| Marsaxlokk – PM <sub>2.5</sub> Sampler Report 3         | 312 |
| Birżebbuġa – PM <sub>10</sub> Sampler Report 3          |     |
| Birżebbuġa – PM <sub>2.5</sub> Sampler Report 3         |     |
| Marsaxlokk – PM <sub>10</sub> Sampler Report 4          |     |
| Marsaxlokk – PM <sub>2.5</sub> Sampler Report 4         | 320 |
| Birżebbuġa – PM <sub>10</sub> Sampler Report 4          | 322 |
| Birżebbuġa – PM <sub>2.5</sub> Sampler Report .4        | 324 |
| Marsaxlokk – PM <sub>10</sub> Sampler Report 5          | 326 |
| Marsaxlokk – PM <sub>2.5</sub> Sampler Report 5         | 328 |
| Birżebbuġa – PM <sub>10</sub> Sampler Report 5          |     |
| Birżebbuġa – PM <sub>2.5</sub> Sampler Report 5         |     |
| Marsaxlokk – PM <sub>10</sub> Sampler Report 6          |     |
| Marsaxlokk – PM <sub>2.5</sub> Sampler Report 6         |     |

| Birżebbuġa – PM <sub>10</sub> Sampler Report 6   |  |
|--------------------------------------------------|--|
| Birżebbuġa – PM <sub>2.5</sub> Sampler Report 6  |  |
| Marsaxlokk – $PM_{10}$ Sampler Report 7          |  |
| Marsaxlokk – PM <sub>2.5</sub> Sampler Report 7  |  |
| Birżebbuġa – PM <sub>10</sub> Sampler Report 7   |  |
| Birżebbuġa – PM <sub>2.5</sub> Sampler Report 7  |  |
| Marsaxlokk – PM <sub>10</sub> Sampler Report 8   |  |
| Marsaxlokk – PM <sub>2.5</sub> Sampler Report 8  |  |
| Birżebbuġa – PM <sub>10</sub> Sampler Report 8   |  |
| Birżebbuġa – PM <sub>2.5</sub> Sampler Report 8  |  |
| Marsaxlokk – PM <sub>10</sub> Sampler Report 9   |  |
| Marsaxlokk – PM <sub>2.5</sub> Sampler Report 9  |  |
| Birżebbuġa – PM <sub>10</sub> Sampler Report 9   |  |
| Birżebbuġa – PM <sub>2.5</sub> Sampler Report 9  |  |
| Marsaxlokk – PM <sub>10</sub> Sampler Report 10  |  |
| Marsaxlokk – PM <sub>2.5</sub> Sampler Report 10 |  |
| Birżebbuġa – PM <sub>10</sub> Sampler Report 10  |  |
| Birżebbuġa – PM <sub>2.5</sub> Sampler Report 10 |  |
| Marsaxlokk – PM <sub>10</sub> Sampler Report 11  |  |
| Marsaxlokk – PM <sub>2.5</sub> Sampler Report 11 |  |
| Birżebbuġa – PM <sub>10</sub> Sampler Report 11  |  |
| Birżebbuġa – PM <sub>2.5</sub> Sampler Report 11 |  |
| Marsaxlokk – PM <sub>10</sub> Sampler Report 12  |  |
| Marsaxlokk – PM <sub>2.5</sub> Sampler Report 12 |  |
| Birżebbuġa – PM <sub>10</sub> Sampler Report 12  |  |
| Birżebbuġa – PM <sub>2.5</sub> Sampler Report 12 |  |
| Marsaxlokk – PM <sub>10</sub> Sampler Report 13  |  |
| Marsaxlokk – PM <sub>2.5</sub> Sampler Report 13 |  |
| Birżebbuġa – PM <sub>10</sub> Sampler Report 13  |  |
| Birżebbuġa – PM <sub>2.5</sub> Sampler Report 13 |  |
| Marsaxlokk – PM <sub>10</sub> Sampler Report 14  |  |
| Marsaxlokk – PM <sub>2.5</sub> Sampler Report 14 |  |
| Birżebbuġa – PM <sub>10</sub> Sampler Report 14  |  |
| Birżebbuġa – PM <sub>2.5</sub> Sampler Report 14 |  |

| Marsaxlokk – PM <sub>10</sub> Sampler Report 15                         | 406 |
|-------------------------------------------------------------------------|-----|
| Marsaxlokk – PM <sub>2.5</sub> Sampler Report 15                        | 408 |
| Birżebbuġa – PM <sub>10</sub> Sampler Report 15                         | 410 |
| Birżebbuġa – PM <sub>2.5</sub> Sampler Report 15                        | 412 |
| Marsaxlokk – PM10 Sampler Report 16                                     | 414 |
| Marsaxlokk – PM <sub>2.5</sub> Sampler Report 16                        | 416 |
| Birżebbuġa – PM <sub>10</sub> Sampler Report 16                         | 418 |
| Birżebbuġa – PM <sub>2.5</sub> Sampler Report 16                        | 420 |
| ANNEX C – METEOROLOGICAL DATA                                           | 422 |
| Report 1                                                                | 423 |
| Report 2                                                                | 424 |
| Report 3                                                                | 425 |
| Report 4                                                                | 426 |
| Report 5                                                                | 427 |
| Report 6                                                                | 428 |
| Report 7                                                                | 429 |
| Report 8                                                                | 430 |
| Report 9                                                                | 431 |
| Report 10                                                               | 432 |
| Report 11                                                               | 433 |
| Report 12                                                               | 434 |
| Report 13                                                               | 435 |
| Report 14                                                               | 436 |
| Report 15                                                               | 437 |
| Report 16                                                               | 438 |
| ANNEX D – MONTHLY REPORTS SCHEDULE \$4.5 OF THE IPPC PERMIT IP0002/07/D |     |

# List of Figures

| Figure 1: Location of Delimara Power Station                                                        | 2  |
|-----------------------------------------------------------------------------------------------------|----|
| Figure 2: Delimara Power Station                                                                    | 3  |
| Figure 3: Location of the Monitoring Sites                                                          | 4  |
| Figure 4: Birżebbuġa                                                                                | 4  |
| Figure 5: Marsaxlokk                                                                                | 5  |
| Figure 6: Petri Dish containing a filter cassette and an exposed filter                             | 10 |
| Figure 7: Exposed Filter (left) and Unexposed Filter (right)                                        | 11 |
| Figure 8: Marsaxlokk – PM <sub>10</sub> vs PM <sub>2.5</sub> histogram plot Report 1                | 16 |
| Figure 9: Birżebbuġa – PM <sub>10</sub> vs PM <sub>2.5</sub> histogram plot Report 1                | 17 |
| Figure 10: PM <sub>10</sub> Comparison Histogram plot Report 1                                      | 18 |
| Figure 11: Marsaxlokk – PM <sub>10</sub> vs PM <sub>2.5</sub> histogram plot Report 1               | 19 |
| Figure 12: Marsaxlokk - PM <sub>10</sub> vs PM <sub>2.5</sub> histogram plot Report 2               | 23 |
| Figure 13: Birżebbuġa - PM <sub>10</sub> vs PM <sub>2.5</sub> histogram plot Report 2               | 24 |
| Figure 14: PM <sub>10</sub> comparison – histogram plot Report 2                                    | 25 |
| Figure 15: PM <sub>2.5</sub> comparison - histogram plot Report 2                                   | 26 |
| Figure 16: Marsaxlokk - PM <sub>10</sub> vs PM <sub>2.5</sub> histogram plot Report 3               | 30 |
| Figure 17: Birżebbuġa - PM <sub>10</sub> vs PM <sub>2.5</sub> histogram plot Report 3               | 31 |
| Figure 18: PM <sub>2.5</sub> comparison - histogram plot Report 3                                   | 32 |
| Figure 19: Marsaxlokk - PM <sub>10</sub> vs PM <sub>2.5</sub> histogram plot – Report 4             | 36 |
| Figure 20: Birżebbuġa - PM <sub>10</sub> vs PM <sub>2.5</sub> histogram plot – Report 4             | 37 |
| Figure 21: PM <sub>2.5</sub> comparison - histogram plot – Report 4                                 | 38 |
| Figure 22: Marsaxlokk - PM <sub>10</sub> vs PM <sub>2.5</sub> histogram plot – Report 5             | 42 |
| Figure 23: Birżebbuġa - PM <sub>10</sub> vs PM <sub>2.5</sub> histogram plot – Report 5             | 43 |
| Figure 24: PM <sub>10</sub> comparison - histogram plot – Report 5                                  | 44 |
| Figure 25: PM <sub>2.5</sub> comparison - histogram plot – Report5                                  | 45 |
| Figure 26: Marsaxlokk - PM <sub>10</sub> vsPM <sub>2.5</sub> histogram plot – Report 6              | 49 |
| Figure 27: Birżebbuġa - PM <sub>10</sub> vsPM <sub>2.5</sub> histogram plot – Report 6              | 50 |
| Figure 28: PM <sub>10</sub> comparison - histogram plot – Report 6                                  | 51 |
| Figure 29: PM <sub>2.5</sub> comparison - histogram plot – Report6                                  | 52 |
| Figure 30: Marsaxlokk - PM <sub>10</sub> vsPM <sub>2.5</sub> histogram plot – Report 7              | 58 |
| Figure 31: Birżebbuġa - PM <sub>10</sub> vsPM <sub>2.5</sub> histogram plot – Report 7              | 59 |
| Figure 32: PM <sub>10</sub> comparison - histogram plot – Report 7                                  | 60 |
| Figure 33: PM <sub>2.5</sub> comparison - histogram plot – Report 7                                 | 61 |
| Figure 34: Marsaxlokk – PM <sub>10</sub> concentrations after subtracting Saharan dust contribution | 65 |
| Figure 35: Birżebbuġa – PM <sub>10</sub> concentrations after subtracting Saharan dust contribution | 66 |
| Figure 36: Marsaxlokk - PM <sub>10</sub> vsPM <sub>2.5</sub> histogram plot – Report 9              | 71 |
| Figure 37: Birżebbuġa - PM <sub>10</sub> vsPM <sub>2.5</sub> histogram plot – Report 9              | 72 |
| Figure 38: PM <sub>10</sub> comparison - histogram plot – Report 9                                  | 73 |
| Figure 39: PM <sub>2.5</sub> comparison - histogram plot – Report 9                                 | 74 |
| Figure 40: Marsaxlokk - PM <sub>10</sub> vsPM <sub>2.5</sub> histogram plot – Report 10             | 78 |
| Figure 41: Birżebbuġa - PM <sub>10</sub> vsPM <sub>2.5</sub> histogram plot – Report 10             | 79 |
| Figure 42: PM <sub>10</sub> comparison - histogram plot – Report 10                                 | 80 |
| Figure 43: PM <sub>2.5</sub> comparison - histogram plot – Report 10                                | 81 |

| Figure 45: Birżebbuga - PMi,wSPM2,5 histogram plot - Report 11.86Figure 46: PM10 comparison - histogram plot - Report 11.87Figure 47: PM2,5 comparison - histogram plot - Report 11.87Figure 48: Misraalokk - PM10 concentrations after subtracting Saharan dust contribution92Figure 43: Misraalokk - PM10, sp. histogram plot - Report 12.96Figure 51: Birżebbuga - PM10 concentrations after subtracting Saharan dust contribution92Figure 52: PM10 comparison - histogram plot - Report 12.96Figure 53: PM2,5 comparison - histogram plot - Report 12.99Figure 54: Marsakokk - PM10 concentrations after subtracting Saharan dust contribution103Figure 55: Mizebbuga - PM10 concentrations after subtracting Saharan dust contribution103Figure 55: Mizebbuga - PM10 concentrations after subtracting Saharan dust contribution103Figure 57: Birżebbuga - PM10 concentrations after subtracting Saharan dust contribution114Figure 61: Birżebbuga - PM10 concentrations after subtracting Saharan dust contribution114Figure 62: Marsakokk - PM10 concentrations after subtracting Saharan dust contribution114Figure 63: Birżebbuga - PM10 concentrations after subtracting Saharan dust contribution114Figure 64: PM10 comparison - histogram plot - Report 14.118Figure 65: PM25 comparison - histogram plot - Report 14.120Figure 64: PM10 comparison - histogram plot - Report 14.121Figure 65: PM25 comparison - histogram plot - Report 15.131Figure 65: PM25 comparison - histogram plot - Report 15.132Figure 67: Birżebbuga - PM10                                                                                                                                                                                                                                     | Figure 44: Marsaxlokk - PM <sub>10</sub> vsPM <sub>2.5</sub> histogram plot – Report 11             |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------|
| Figure 46: PM <sub>10</sub> comparison - histogram plot – Report 1187Figure 47: PM <sub>23</sub> comparison - histogram plot – Report 1188Figure 48: Marsaklokk – PM <sub>10</sub> concentrations after subtracting Saharan dust contribution92Figure 50: Marsaklokk - PM <sub>10</sub> concentrations after subtracting Saharan dust contribution92Figure 51: Birżebbuga – PM <sub>10</sub> concentrations after subtracting Saharan dust contribution92Figure 52: PM <sub>23</sub> comparison - histogram plot – Report 1298Figure 53: PM <sub>23</sub> comparison - histogram plot – Report 1299Figure 55: Birżebbuga – PM <sub>10</sub> concentrations after subtracting Saharan dust contribution103Figure 55: Birżebbuga - PM <sub>10</sub> concentrations after subtracting Saharan dust contribution103Figure 55: Birżebbuga - PM <sub>10</sub> concentrations after subtracting Saharan dust contribution110Figure 52: PM <sub>23</sub> comparison - histogram plot – Report 13109Figure 53: PM <sub>23</sub> comparison - histogram plot – Report 13110Figure 61: Birżebbuga - PM <sub>10</sub> concentrations after subtracting Saharan dust contribution114Figure 62: Marsaklokk - PM <sub>10</sub> concentrations after subtracting Saharan dust contribution114Figure 63: Birżebbuga - PM <sub>10</sub> concentrations after subtracting Saharan dust contribution112Figure 64: Marsaklokk - PM <sub>10</sub> concentrations after subtracting Saharan dust contribution125Figure 65: PM <sub>25</sub> comparison - histogram plot – Report 14120Figure 65: PM <sub>25</sub> comparison - histogram plot – Report 15133Figure 66: Marsaklokk - PM <sub>10</sub> concentrations after subtracting Saharan dust contribution125Figure 67: Birżebbuga - PM <sub>10</sub> c |                                                                                                     |          |
| Figure 47: PM25 comparison - histogram plot – Report 1188Figure 48: Marsakokk – PM10 concentrations after subtracting Saharan dust contribution92Figure 50: Marsakokk – PM10 concentrations after subtracting Saharan dust contribution92Figure 51: Birżebbuga - PM10 concentrations after subtracting Saharan dust contribution92Figure 52: PM10 comparison - histogram plot – Report 1298Figure 53: PM25 comparison - histogram plot – Report 1298Figure 55: Birżebbuga – PM10 concentrations after subtracting Saharan dust contribution103Figure 55: Marsakokk - PM10 concentrations after subtracting Saharan dust contribution103Figure 55: Marsakokk - PM10 concentrations after subtracting Saharan dust contribution104Figure 56: Marsakokk - PM10 concentrations after subtracting Saharan dust contribution114Figure 51: Birżebbuga - PM10 concentrations after subtracting Saharan dust contribution114Figure 61: Birżebbuga - PM10 concentrations after subtracting Saharan dust contribution114Figure 61: Birżebbuga - PM10 concentrations after subtracting Saharan dust contribution114Figure 63: Birżebbuga - PM10 concentrations after subtracting Saharan dust contribution114Figure 64: PM10 comparison - histogram plot - Report 14.118Figure 65: PM21 comparison - histogram plot - Report 14.120Figure 64: PM10 comparison - histogram plot - Report 15.131Figure 65: PM22 comparison - histogram plot - Report 15.132Figure 67: Birżebbuga - PM10 concentrations after subtracting Saharan dust contribution125Figure 67: Birżebbuga - PM10 concentra                                                                                                                                                                                                         |                                                                                                     |          |
| Figure 48: Marsaklokk – PM <sub>10</sub> concentrations after subtracting Saharan dust contribution       92         Figure 49: Birżebbuga – PM <sub>10</sub> concentrations after subtracting Saharan dust contribution       92         Figure 51: Birżebbuga – PM <sub>10</sub> vSPM <sub>25</sub> histogram plot – Report 12.       96         Figure 52: PM <sub>10</sub> comparison – histogram plot – Report 12.       98         Figure 53: PM <sub>25</sub> comparison – histogram plot – Report 12.       98         Figure 53: Birżebbuga – PM <sub>10</sub> concentrations after subtracting Saharan dust contribution       103         Figure 55: Birżebbuga – PM <sub>10</sub> concentrations after subtracting Saharan dust contribution       103         Figure 57: Birżebbuga – PM <sub>10</sub> concentrations after subtracting Saharan dust contribution       103         Figure 57: Birżebbuga – PM <sub>10</sub> concentrations after subtracting Saharan dust contribution       114         Figure 61: Birżebbuga – PM <sub>10</sub> concentrations after subtracting Saharan dust contribution       114         Figure 62: Marsaklokk – PM <sub>10</sub> concentrations after subtracting Saharan dust contribution       114         Figure 63: Birżebbuga – PM <sub>10</sub> concentrations after subtracting Saharan dust contribution       114         Figure 65: PM <sub>15</sub> comparison - histogram plot – Report 14.       119         Figure 65: PM <sub>15</sub> comparison - histogram plot – Report 14.       120         Figure 65: PM <sub>15</sub> comparison - histogram plot – Report 14.       121         Figure 65: PM <sub>15</sub> comparison - histogram plot – Repor                                                         |                                                                                                     |          |
| Figure 49: Birżebbuĝa – PM <sub>10</sub> concentrations after subtracting Saharan dust contribution       92         Figure 50: Marsakokk - PM <sub>10</sub> vsPM <sub>25</sub> histogram plot – Report 12       96         Figure 51: Birżebbuĝa - PM <sub>10</sub> concentrations after subtracting Saharan dust contribution       103         Figure 52: Birżebbuĝa - PM <sub>10</sub> concentrations after subtracting Saharan dust contribution       103         Figure 53: PM <sub>25</sub> comparison - histogram plot – Report 12       99         Figure 54: Marsakokk - PM <sub>10</sub> concentrations after subtracting Saharan dust contribution       103         Figure 57: Birżebbuĝa – PM <sub>10</sub> concentrations after subtracting Saharan dust contribution       104         Figure 57: Birżebbuĝa – PM <sub>10</sub> concentrations after subtracting Saharan dust contribution       114         Figure 59: PM <sub>25</sub> comparison - histogram plot – Report 13       100         Figure 61: Birżebbuĝa - PM <sub>10</sub> concentrations after subtracting Saharan dust contribution       114         Figure 63: Birżebbuĝa - PM <sub>10</sub> concentrations after subtracting Saharan dust contribution       114         Figure 64: Marsakokk - PM <sub>10</sub> concentrations after subtracting Saharan dust contribution       121         Figure 64: Marsakokk - PM <sub>10</sub> concentrations after subtracting Saharan dust contribution       122         Figure 63: Birżebbuĝa - PM <sub>10</sub> concentrations after subtracting Saharan dust contribution       125         Figure 64: Marsakokk - PM <sub>10</sub> concentrations after subtracting Saharan dust contribution       125<                                         |                                                                                                     |          |
| Figure 50: Marsaklokk - PM110VSPM2.5 histogram plot – Report 12.       96         Figure 51: Birżebbuga - PM100VSPM2.5 histogram plot – Report 12.       97         Figure 52: PM10 comparison - histogram plot – Report 12.       98         Figure 53: PM2.5 comparison - histogram plot – Report 12.       99         Figure 54: Marsaklokk - PM10 concentrations after subtracting Saharan dust contribution       103         Figure 55: Birżebbuga – PM10 concentrations after subtracting Saharan dust contribution       103         Figure 55: Marsaklokk - PM10 concentrations after subtracting Saharan dust contribution       103         Figure 55: Marsaklokk - PM10 concentrations after subtracting Saharan dust contribution       114         Figure 59: PM2.5 comparison - histogram plot – Report 13.       109         Figure 61: Birżebbuga – PM10 concentrations after subtracting Saharan dust contribution       114         Figure 62: Marsaklokk – PM10 concentrations after subtracting Saharan dust contribution       114         Figure 63: Birżebbuga – PM10 concentrations after subtracting Saharan dust contribution       114         Figure 64: PM10 comparison - histogram plot – Report 14.       119         Figure 65: Marsaklokk – PM10 concentrations after subtracting Saharan dust contribution       125         Figure 66: Marsaklokk – PM10 concentrations after subtracting Saharan dust contribution       125         Figure 67: Birżebbuga – PM10 concentrations after subtracting Saharan du                                                                                                                                                                                                                                    |                                                                                                     |          |
| Figure 51: Birżebbuga - PM100VSPM2,5 histogram plot – Report 1297Figure 52: PM10, comparison - histogram plot – Report 1298Figure 53: PM2,5, comparison - histogram plot – Report 1299Figure 54: Marsaxlokk – PM10, concentrations after subtracting Saharan dust contribution103Figure 55: Birżebbuga – PM10, concentrations after subtracting Saharan dust contribution103Figure 57: Birżebbuga – PM10, concentrations after subtracting Saharan dust contribution103Figure 57: Birżebbuga – PM10, concentrations after subtracting Saharan dust contribution104Figure 57: Birżebbuga – PM10, concentrations after subtracting Saharan dust contribution114Figure 60: Marsaxlokk – PM10, concentrations after subtracting Saharan dust contribution114Figure 61: Birżebbuga – PM10, concentrations after subtracting Saharan dust contribution114Figure 62: Marsaxlokk – PM10, concentrations after subtracting Saharan dust contribution114Figure 63: Birżebbuga – PM10, concentrations after subtracting Saharan dust contribution125Figure 64: PM10, comparison - histogram plot – Report 14120Figure 65: PM2,5 comparison - histogram plot – Report 15131Figure 69: Birżebbuga – PM10, concentrations after subtracting Saharan dust contribution125Figure 69: Birżebbuga – PM10, concentrations after subtracting Saharan dust contribution125Figure 69: Birżebbuga – PM10, concentrations after subtracting Saharan dust contribution125Figure 69: Birżebbuga – PM10, concentrations after subtracting Saharan dust contribution125Figure 69: Birżebbuga – PM10, comparison – histogram plot – R                                                                                                                                                                              |                                                                                                     |          |
| Figure 52: PM125 comparison - histogram plot - Report 1298Figure 53: PM225 comparison - histogram plot - Report 1299Figure 55: Birżebbuga - PM120 concentrations after subtracting Saharan dust contribution103Figure 55: Birżebbuga - PM120 shistogram plot - Report 13107Figure 55: Birżebbuga - PM120 shistogram plot - Report 13108Figure 55: Birżebbuga - PM120 shistogram plot - Report 13109Figure 59: PM25 comparison - histogram plot - Report 13110Figure 61: Birżebbuga - PM120 concentrations after subtracting Saharan dust contribution114Figure 62: Marsaxlokk - PM120 concentrations after subtracting Saharan dust contribution114Figure 63: Birżebbuga - PM120 concentrations after subtracting Saharan dust contribution114Figure 64: PM120 concentrations after subtracting Saharan dust contribution114Figure 64: PM120 concentrations after subtracting Saharan dust contribution125Figure 65: Birżebbuga - PM120 shistogram plot - Report 14120Figure 67: Birżebbuga - PM120 concentrations after subtracting Saharan dust contribution125Figure 67: Birżebbuga - PM120 concentrations after subtracting Saharan dust contribution125Figure 68: Marsaxlokk - PM120 concentrations after subtracting Saharan dust contribution125Figure 69: Birżebbuga - PM100 SPM25 histogram plot - Report 15133Figure 70: PM120 comparison - histogram plot - Report 15133Figure 71: PM250 comparison - histogram plot - Report 15133Figure 72: Marsaxlokk - PM100 SPM25 histogram plot - Report 16134Figure 73: Birżebbuga - PM100 SPM25                                                                                                                                                                                                                                    |                                                                                                     |          |
| Figure 53: PM2_5 comparison - histogram plot – Report 1299Figure 54: Marsaxlokk – PM10 concentrations after subtracting Saharan dust contribution103Figure 55: Birżebbuga – PM10 concentrations after subtracting Saharan dust contribution103Figure 55: Birżebbuga – PM10 spM2_5 histogram plot – Report 13107Figure 57: Birżebbuga – PM10 concentrations after subtracting Saharan dust contribution108Figure 59: PM2_5 comparison - histogram plot – Report 13109Figure 60: Marsaklokk – PM10 concentrations after subtracting Saharan dust contribution114Figure 61: Birżebbuga – PM10 concentrations after subtracting Saharan dust contribution114Figure 62: Marsaklokk – PM10 concentrations after subtracting Saharan dust contribution114Figure 63: Birżebbuga – PM10 spM2_5 histogram plot – Report 14119Figure 63: Birżebbuga – PM10 spM2_5 histogram plot – Report 14120Figure 65: PM2_5 comparison - histogram plot – Report 14121Figure 65: Birżebbuga – PM10 concentrations after subtracting Saharan dust contribution125Figure 65: Birżebbuga – PM10 concentrations after subtracting Saharan dust contribution125Figure 70: Birżebbuga – PM10 concentrations after subtracting Saharan dust contribution125Figure 71: PM2_5 comparison - histogram plot – Report 15131Figure 72: Marsaklokk – PM10 concentrations after subtracting Saharan dust contribution125Figure 70: PM10 comparison - histogram plot – Report 15133Figure 71: Birżebbuga – PM10 spM2_5 histogram plot – Report 15133Figure 72: Marsaklokk - PM10 spM2_5 histogram plot – Report 16 </td <td></td> <td></td>                                                                                                                                                                                  |                                                                                                     |          |
| Figure 54: Marsaxlokk – PM10 concentrations after subtracting Saharan dust contribution103Figure 55: Birżebbuga – PM10 concentrations after subtracting Saharan dust contribution103Figure 56: Marsaxlokk - PM109PM25 histogram plot – Report 13100Figure 57: Birżebbuga - PM109PM25 histogram plot – Report 13109Figure 58: PM25 comparison - histogram plot – Report 13100Figure 59: PM25 comparison - histogram plot – Report 13100Figure 51: Birżebbuga – PM10 concentrations after subtracting Saharan dust contribution114Figure 62: Marsaxlokk – PM10 concentrations after subtracting Saharan dust contribution114Figure 63: Birżebbuga - PM10 concentrations after subtracting Saharan dust contribution114Figure 64: PM10 comparison - histogram plot – Report 14119Figure 65: PM25 comparison - histogram plot – Report 14120Figure 66: Marsaxlokk – PM10 concentrations after subtracting Saharan dust contribution125Figure 67: Birżebbuga – PM10 concentrations after subtracting Saharan dust contribution125Figure 67: Birżebbuga – PM10 soncentrations after subtracting Saharan dust contribution125Figure 67: Birżebbuga – PM10 soncentrations after subtracting Saharan dust contribution125Figure 70: PM10 comparison - histogram plot – Report 15133Figure 71: PM25 comparison - histogram plot – Report 15134Figure 72: Marsaxlokk - PM1098PM25 histogram plot – Report 16133Figure 73: Birżebbuga - PM1098PM25 histogram plot – Report 16134Figure 74: PM10 comparison - histogram plot – Report 16134Figure 75: PM25 comp                                                                                                                                                                                                                                    |                                                                                                     |          |
| Figure 55: Birżebbuga - PM10 concentrations after subtracting Saharan dust contribution103Figure 56: Marsaxlokk - PM10/SPM2.5 histogram plot - Report 13107Figure 57: Birżebbuga - PM10/SPM2.5 histogram plot - Report 13108Figure 58: PM10 comparison - histogram plot - Report 13109Figure 61: Birżebbuga - PM10/Concentrations after subtracting Saharan dust contribution114Figure 62: Marsaxlokk - PM10/SPM2.5 histogram plot - Report 14118Figure 63: Birżebbuga - PM10/SPM2.5 histogram plot - Report 14118Figure 63: Birżebbuga - PM10/SPM2.5 histogram plot - Report 14120Figure 64: PM10/Comparison - histogram plot - Report 14121Figure 65: PM2.5 comparison - histogram plot - Report 14121Figure 66: Marsaxlokk - PM10/SPM2.5 histogram plot - Report 14122Figure 66: Marsaxlokk - PM10/SPM2.5 histogram plot - Report 14121Figure 66: Marsaxlokk - PM10/SPM2.5 histogram plot - Report 15131Figure 67: Birżebbuga - PM10/SPM2.5 histogram plot - Report 15133Figure 70: PM10/SPM2.5 histogram plot - Report 15133Figure 71: PM2.5 comparison - histogram plot - Report 15133Figure 72: Marsaxlokk + PM2.5 histogram plot - Report 16138Figure 73: Birżebbuga - PM10/SPM2.5 histogram plot - Report 16138Figure 74: PM10/SPM2.5 histogram plot - Report 16138Figure 75: PM2.5 comparison - histogram plot - Report 16140Figure 75: PM2.5 comparison - histogram plot - Report 16141Figure 77: PM10/SPM2.5 histogram plot - Report 16144Figure 77: PM2.5 comparison - histogram                                                                                                                                                                                                                                                                                          |                                                                                                     |          |
| Figure 56: Marsaxlokk - PM10vSPM25 histogram plot - Report 13107Figure 57: Birżebbuga - PM10vSPM25 histogram plot - Report 13108Figure 58: PM10 comparison - histogram plot - Report 13109Figure 59: PM25 comparison - histogram plot - Report 13110Figure 61: Birżebbuga - PM10 concentrations after subtracting Saharan dust contribution114Figure 62: Marsaxlokk - PM10 concentrations after subtracting Saharan dust contribution114Figure 63: Birżebbuga - PM10 concentrations after subtracting Saharan dust contribution114Figure 64: PM10 comparison - histogram plot - Report 14119Figure 65: PM25 comparison - histogram plot - Report 14120Figure 65: Birżebbuga - PM10 concentrations after subtracting Saharan dust contribution125Figure 66: Marsaxlokk - PM10 concentrations after subtracting Saharan dust contribution125Figure 67: Birżebbuga - PM10 concentrations after subtracting Saharan dust contribution125Figure 69: Birżebbuga - PM10 concentrations after subtracting Saharan dust contribution125Figure 70: PM10 comparison - histogram plot - Report 15131Figure 71: PM25 comparison - histogram plot - Report 15133Figure 72: Marsaxlokk - PM10vSPM25 histogram plot - Report 16138Figure 74: PM10 comparison - histogram plot - Report 16140Figure 75: PM25 comparison - histogram plot - Report 16140Figure 74: PM10 comparison - histogram plot - Report 16141Figure 75: PM25 comparison - histogram plot - Report 16140Figure 76: Air monitoring data plot on the days of exceedance143<                                                                                                                                                                                                                                                           |                                                                                                     |          |
| Figure 57: Birżebbuġa - PM10vSPM2.5 histogram plot – Report 13.108Figure 58: PM10 comparison - histogram plot – Report 13.109Figure 59: PM2.5 comparison - histogram plot – Report 13.110Figure 61: Birżebbuġa – PM10 concentrations after subtracting Saharan dust contribution114Figure 62: Marsaklokk - PM10 concentrations after subtracting Saharan dust contribution114Figure 63: Birżebbuġa - PM10vSPM2.5 histogram plot – Report 14.119Figure 64: PM10 comparison - histogram plot – Report 14.120Figure 65: Marsaklokk - PM10 concentrations after subtracting Saharan dust contribution125Figure 67: Birżebbuġa - PM10 concentrations after subtracting Saharan dust contribution125Figure 67: Birżebbuġa - PM10 concentrations after subtracting Saharan dust contribution125Figure 67: Birżebbuġa - PM10 concentrations after subtracting Saharan dust contribution125Figure 67: Birżebbuġa - PM10 concentrations after subtracting Saharan dust contribution125Figure 67: Birżebbuġa - PM10 concentrations after subtracting Saharan dust contribution125Figure 67: Birżebbuġa - PM10 concentrations after subtracting Saharan dust contribution125Figure 67: Birżebbuġa - PM10 concentrations after subtracting Saharan dust contribution125Figure 67: Birżebbuġa - PM10 concentrations after subtracting Saharan dust contribution125Figure 67: Birżebbuġa - PM10 concentrations after subtracting Saharan dust contribution125Figure 67: PM10 comparison - histogram plot - Report 15.133Figure 71: PM25 comparison - histogram plot - Report 16.144Figure 75                                                                                                                                                                                                         |                                                                                                     |          |
| Figure 58: PM10 comparison - histogram plot – Report 13109Figure 59: PM25 comparison - histogram plot – Report 13110Figure 60: Marsaxlokk – PM10 concentrations after subtracting Saharan dust contribution114Figure 61: Birżebbuġa – PM10 concentrations after subtracting Saharan dust contribution114Figure 63: Birżebbuġa - PM10 concentrations after subtracting Saharan dust contribution114Figure 63: Birżebbuġa - PM10 concentrations after subtracting Saharan dust contribution114Figure 63: Birżebbuġa - PM10 concentrations after subtracting Saharan dust contribution120Figure 64: PM10 comparison - histogram plot – Report 14120Figure 65: PM25 comparison - histogram plot – Report 14121Figure 67: Birżebbuġa – PM10 concentrations after subtracting Saharan dust contribution125Figure 68: Marsaxlokk - PM10 concentrations after subtracting Saharan dust contribution125Figure 69: Birżebbuġa - PM10 concentrations after subtracting Saharan dust contribution125Figure 69: Birżebbuġa - PM10 concentrations after subtracting Saharan dust contribution125Figure 70: PM10 comparison - histogram plot – Report 15131Figure 71: PM25 comparison - histogram plot – Report 15133Figure 72: Marsaxlokk - PM10 vSPM25 histogram plot – Report 16134Figure 75: PM25 comparison - histogram plot – Report 16140Figure 75: PM25 comparison - histogram plot – Report 16141Figure 75: PM25 comparison - histogram plot – Report 16141Figure 75: PM25 comparison - histogram plot – Report 16144Figure 75: PM25 comparison - histog                                                                                                                                                                                                                                    |                                                                                                     |          |
| Figure 59: PM2.5 comparison - histogram plot – Report 13110Figure 60: Marsaxlokk – PM10 concentrations after subtracting Saharan dust contribution114Figure 61: Birżebbuĝa – PM10 concentrations after subtracting Saharan dust contribution114Figure 62: Marsaxlokk - PM10vSPM2.5 histogram plot – Report 14118Figure 63: Birżebbuĝa – PM10 comparison - histogram plot – Report 14120Figure 64: PM10 comparison - histogram plot – Report 14121Figure 65: Marsaxlokk – PM10 concentrations after subtracting Saharan dust contribution125Figure 66: Marsaxlokk – PM10 concentrations after subtracting Saharan dust contribution125Figure 67: Birżebbuĝa – PM10 concentrations after subtracting Saharan dust contribution125Figure 69: Birżebbuĝa – PM10 concentrations after subtracting Saharan dust contribution125Figure 70: PM10 comparison - histogram plot – Report 15131Figure 71: PM2.5 comparison - histogram plot – Report 15133Figure 72: Marsaxlokk - PM10VSPM2.5 histogram plot – Report 16138Figure 73: Birżebbuĝa - PM10 vsPM2.5 histogram plot – Report 16139Figure 73: Birżebbuĝa - PM10 vsPM2.5 histogram plot – Report 16140Figure 74: PM10 comparison - histogram plot – Report 16140Figure 75: PM2.5 comparison - histogram plot – Report 16141Figure 75: PM2.5 comparison - histogram plot – Report 16141Figure 77: PM10 hourly data for the 29 September143Figure 78: Ar monitoring data plot on the days of exceedance143Figure 81: BSC-DREAM outputs on the 29 September146Figure 82: HYSP                                                                                                                                                                                                                                                               |                                                                                                     |          |
| Figure 60: Marsaxlokk – PM10 concentrations after subtracting Saharan dust contribution114Figure 61: Birżebbuġa – PM10 concentrations after subtracting Saharan dust contribution114Figure 62: Marsaxlokk - PM10vsPM2,5 histogram plot – Report 14119Figure 63: Birżebbuġa - PM10 vsPM2,5 histogram plot – Report 14120Figure 64: PM10 comparison - histogram plot – Report 14121Figure 65: PM2,5 comparison - histogram plot – Report 14121Figure 67: Birżebbuġa – PM10 concentrations after subtracting Saharan dust contribution125Figure 68: Marsaxlokk – PM10 concentrations after subtracting Saharan dust contribution125Figure 69: Birżebbuġa – PM10 vsPM2,5 histogram plot – Report 15131Figure 70: PM10 comparison - histogram plot – Report 15132Figure 71: PM2,5 comparison - histogram plot – Report 15133Figure 72: Marsaxlokk - PM10vsPM2,5 histogram plot – Report 15134Figure 73: Birżebbuġa - PM10vsPM2,5 histogram plot – Report 16138Figure 74: PM10 comparison - histogram plot – Report 16140Figure 75: PM2,5 comparison - histogram plot – Report 16141Figure 76: Air monitoring data plot on the days of exceedance143Figure 77: PM10 hourly data for the 29 September144Figure 78: AERONET_ETNA 250 m _ TERRA146Figure 81: HSC-DREAM outputs on the 29 September147Figure 82: HYSPLIT backward trajectory at 100 m on the 29 September147Figure 83: HYSPLIT backward trajectory at 100 m on the 29 September151Figure 84: HYSPLIT backward trajectory at 100 m on the 29 September151                                                                                                                                                                                                                                                                        |                                                                                                     |          |
| Figure 61: Birżebbuģa – PM10 concentrations after subtracting Saharan dust contribution114Figure 62: Marsaxlokk - PM10vsPM2.5 histogram plot – Report 14.118Figure 63: Birżebbuģa - PM10 vsPM2.5 histogram plot – Report 14.119Figure 64: PM10 comparison - histogram plot – Report 14.120Figure 65: PM2.5 comparison - histogram plot – Report 14.121Figure 66: Marsaxlokk – PM10 concentrations after subtracting Saharan dust contribution125Figure 67: Birżebbuģa – PM10 concentrations after subtracting Saharan dust contribution125Figure 69: Birżebbuģa – PM10 concentrations after subtracting Saharan dust contribution125Figure 69: Birżebbuģa - PM10 vsPM2.5 histogram plot – Report 15.131Figure 70: PM10 comparison - histogram plot – Report 15.133Figure 71: PM2.5 comparison - histogram plot – Report 15.133Figure 72: Marsaklokk - PM10vsPM2.5 histogram plot – Report 16.138Figure 73: Birżebbuģa - PM10vsPM2.5 histogram plot – Report 16.139Figure 74: PM10 comparison - histogram plot – Report 16.140Figure 75: PM2.5 comparison - histogram plot – Report 16.141Figure 76: Air monitoring data plot on the days of exceedance143Figure 77: PM10 hourly data for the 29 September144Figure 78: PM2.6 Nottry data for the 29 September146Figure 81: BSC-DREAM outputs on the 29 September147Figure 82: HYSPLIT model output on the Maltese islands on the 29 September and over a period of 3 days148Figure 83: HYSPLIT backward trajectory at 100 m on the 29 September150Figure 84: HYSPLIT ba                                                                                                                                                                                                                                                               |                                                                                                     |          |
| Figure 63: Birżebbuġa - PM10VSPM2.5 histogram plot – Report 14119Figure 63: PM25 comparison - histogram plot – Report 14120Figure 65: PM25 comparison - histogram plot – Report 14121Figure 66: Marsaxlokk – PM10 concentrations after subtracting Saharan dust contribution125Figure 67: Birżebbuġa – PM10 concentrations after subtracting Saharan dust contribution125Figure 68: Marsaxlokk - PM10 concentrations after subtracting Saharan dust contribution125Figure 69: Birżebbuġa - PM10 concentrations after subtracting Saharan dust contribution125Figure 69: Birżebbuġa - PM10 comparison - histogram plot – Report 15132Figure 70: PM10 comparison - histogram plot – Report 15133Figure 71: PM2.5 comparison - histogram plot – Report 16138Figure 73: Birżebbuġa - PM10VSPM2.5 histogram plot – Report 16139Figure 74: PM10 comparison - histogram plot – Report 16140Figure 75: PM2.5 comparison - histogram plot – Report 16140Figure 75: PM2.5 comparison - histogram plot – Report 16141Figure 76: Air monitoring data plot on the days of exceedance143Figure 78: PM10 hourly data for the 29 September144Figure 79: AERONET_ETNA 250 m_AQUA146Figure 81: BSC-DREAM outputs on the 29 September147Figure 82: HYSPLIT model output on the Maltese islands on the 29 September aperiod of3 days148Figure 83: HYSPLIT backward trajectory at 100 m on the 29 September151Figure 84: HYSPLIT backward trajectory at 1500 m on the 29 September152Figure 84: HYSPLIT backward trajector                                                                                                                                                                                                                                                                                 |                                                                                                     |          |
| Figure 63: Birżebbuġa - PM10VSPM2.5 histogram plot – Report 14119Figure 63: PM25 comparison - histogram plot – Report 14120Figure 65: PM25 comparison - histogram plot – Report 14121Figure 66: Marsaxlokk – PM10 concentrations after subtracting Saharan dust contribution125Figure 67: Birżebbuġa – PM10 concentrations after subtracting Saharan dust contribution125Figure 68: Marsaxlokk - PM10 concentrations after subtracting Saharan dust contribution125Figure 69: Birżebbuġa - PM10 concentrations after subtracting Saharan dust contribution125Figure 69: Birżebbuġa - PM10 comparison - histogram plot – Report 15132Figure 70: PM10 comparison - histogram plot – Report 15133Figure 71: PM2.5 comparison - histogram plot – Report 16138Figure 73: Birżebbuġa - PM10VSPM2.5 histogram plot – Report 16139Figure 74: PM10 comparison - histogram plot – Report 16140Figure 75: PM2.5 comparison - histogram plot – Report 16140Figure 75: PM2.5 comparison - histogram plot – Report 16141Figure 76: Air monitoring data plot on the days of exceedance143Figure 78: PM10 hourly data for the 29 September144Figure 79: AERONET_ETNA 250 m_AQUA146Figure 81: BSC-DREAM outputs on the 29 September147Figure 82: HYSPLIT model output on the Maltese islands on the 29 September aperiod of3 days148Figure 83: HYSPLIT backward trajectory at 100 m on the 29 September151Figure 84: HYSPLIT backward trajectory at 1500 m on the 29 September152Figure 84: HYSPLIT backward trajector                                                                                                                                                                                                                                                                                 | Figure 62: Marsaxlokk - PM <sub>10</sub> vsPM <sub>2.5</sub> histogram plot – Report 14             | 118      |
| Figure 65: PM2.5 comparison - histogram plot – Report 14121Figure 66: Marsaxlokk – PM10 concentrations after subtracting Saharan dust contribution125Figure 67: Birżebbuga – PM10 concentrations after subtracting Saharan dust contribution125Figure 68: Marsaxlokk - PM10 concentrations after subtracting Saharan dust contribution125Figure 69: Birżebbuga - PM10 vsPM2.5 histogram plot – Report 15131Figure 70: PM10 comparison - histogram plot – Report 15133Figure 71: PM2.5 comparison - histogram plot – Report 15134Figure 72: Marsaxlokk - PM10 vsPM2.5 histogram plot – Report 16138Figure 73: Birżebbuga - PM10 vsPM2.5 histogram plot – Report 16139Figure 74: PM10 comparison - histogram plot – Report 16140Figure 75: PM2.5 comparison - histogram plot – Report 16140Figure 75: PM2.5 comparison - histogram plot – Report 16141Figure 76: Air monitoring data plot on the days of exceedance143Figure 77: PM10 hourly data for the 29 September144Figure 80: AERONET_ETNA 250 m_TERRA.146Figure 81: BSC-DREAM outputs on the 29 September147Figure 82: HYSPLIT model output on the Maltese islands on the 29 September taken over a period of3 daysAdays148Figure 83: HYSPLIT backward trajectory at 100 m on the 29 September150Figure 84: HYSPLIT backward trajectory at 500 m on the 29 September151Figure 85: HYSPLIT backward trajectory at 500 m on the 29 September152Figure 86: MODIS Terra and Aqua Level 3-Data on the 29 September152                                                                                                                                                                                                                                                                                                                 |                                                                                                     |          |
| Figure 66: Marsaxlokk – PM10 concentrations after subtracting Saharan dust contribution125Figure 67: Birżebbuġa – PM10 concentrations after subtracting Saharan dust contribution125Figure 68: Marsaxlokk - PM10 vsPM2.5 histogram plot – Report 15131Figure 69: Birżebbuġa - PM10 vsPM2.5 histogram plot – Report 15132Figure 70: PM10 comparison - histogram plot – Report 15133Figure 71: PM2.5 comparison - histogram plot – Report 15134Figure 73: Birżebbuġa - PM10 vsPM2.5 histogram plot – Report 16138Figure 73: Birżebbuġa - PM10 vsPM2.5 histogram plot – Report 16139Figure 74: PM10 comparison - histogram plot – Report 16140Figure 75: PM2.5 comparison - histogram plot – Report 16141Figure 76: Air monitoring data plot on the days of exceedance143Figure 77: PM10 hourly data for the 29 September144Figure 78: PM10 hourly data for the 30 September145Figure 80: AERONET_ETNA 250 m_TERRA146Figure 81: BSC-DREAM outputs on the 29 September147Figure 82: HYSPLIT model output on the Maltese islands on the 29 September rate148Figure 83: HYSPLIT backward trajectory at 100 m on the 29 September148Figure 84: HYSPLIT backward trajectory at 500 m on the 29 September150Figure 85: HYSPLIT backward trajectory at 500 m on the 29 September151Figure 85: HYSPLIT backward trajectory at 500 m on the 29 September152Figure 86: MODIS Terra and Aqua Level 3-Data on the 29 September153                                                                                                                                                                                                                                                                                                                                                                    | Figure 64: PM <sub>10</sub> comparison - histogram plot – Report 14                                 | 120      |
| Figure 67: Birżebbuġa – PM10 concentrations after subtracting Saharan dust contribution125Figure 68: Marsaxlokk - PM10vSPM2.5 histogram plot – Report 15.131Figure 69: Birżebbuġa - PM10 comparison - histogram plot – Report 15.132Figure 70: PM10 comparison - histogram plot – Report 15.133Figure 72: Marsaxlokk - PM10vSPM2.5 histogram plot – Report 15.134Figure 72: Marsaxlokk - PM10vSPM2.5 histogram plot – Report 16.138Figure 73: Birżebbuġa - PM10vSPM2.5 histogram plot – Report 16.139Figure 74: PM10 comparison - histogram plot – Report 16.140Figure 75: PM2.5 comparison - histogram plot – Report 16.141Figure 76: Air monitoring data plot on the days of exceedance143Figure 77: PM10 hourly data for the 29 September144Figure 78: PM10 hourly data for the 30 September146Figure 80: AERONET_ETNA 250 m_TERRA.146Figure 81: BSC-DREAM outputs on the 29 September147Figure 82: HYSPLIT model output on the Maltese islands on the 29 September148Figure 83: HYSPLIT backward trajectory at 100 m on the 29 September150Figure 84: HYSPLIT backward trajectory at 1500 m on the 29 September151Figure 85: HYSPLIT backward trajectory at 1500 m on the 29 September152Figure 86: MODIS Terra and Aqua Level 3-Data on the 29 September153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Figure 65: PM <sub>2.5</sub> comparison - histogram plot – Report 14                                | 121      |
| Figure 68: Marsaxlokk - PM <sub>10</sub> vsPM <sub>2.5</sub> histogram plot – Report 15.       131         Figure 69: Birżebbuġa - PM <sub>10</sub> vsPM <sub>2.5</sub> histogram plot – Report 15.       132         Figure 70: PM <sub>10</sub> comparison - histogram plot – Report 15.       133         Figure 71: PM <sub>2.5</sub> comparison - histogram plot – Report 15.       134         Figure 72: Marsaxlokk - PM <sub>10</sub> vsPM <sub>2.5</sub> histogram plot – Report 16.       138         Figure 73: Birżebbuġa - PM <sub>10</sub> vsPM <sub>2.5</sub> histogram plot – Report 16.       139         Figure 74: PM <sub>10</sub> comparison - histogram plot – Report 16.       140         Figure 75: PM <sub>2.5</sub> comparison - histogram plot – Report 16.       140         Figure 76: Air monitoring data plot on the days of exceedance       143         Figure 78: PM <sub>10</sub> hourly data for the 29 September       144         Figure 80: AERONET_ETNA 250 m_AQUA       146         Figure 81: BSC-DREAM outputs on the 29 September       147         Figure 82: HYSPLIT model output on the Maltese islands on the 29 September taken over a period of 3 days       148         Figure 83: HYSPLIT backward trajectory at 100 m on the 29 September       150         Figure 85: HYSPLIT backward trajectory at 1500 m on the 29 September       151         Figure 85: HYSPLIT backward trajectory at 1500 m on the 29 September       152         Figure 86: MODIS Terra and Aqua Level 3-Data on the 29 September       153                                                                                                                                                                                                            | Figure 66: Marsaxlokk – PM <sub>10</sub> concentrations after subtracting Saharan dust contribution | 125      |
| Figure 69: Birżebbuģa - PM10vSPM2.5 histogram plot – Report 15.132Figure 70: PM10 comparison - histogram plot – Report 15.133Figure 71: PM2.5 comparison - histogram plot – Report 15.134Figure 72: Marsaxlokk - PM10vSPM2.5 histogram plot – Report 16.138Figure 73: Birżebbuģa - PM10vSPM2.5 histogram plot – Report 16.139Figure 74: PM10 comparison - histogram plot – Report 16.140Figure 75: PM2.5 comparison - histogram plot – Report 16.141Figure 76: Air monitoring data plot on the days of exceedance143Figure 77: PM10 hourly data for the 29 September144Figure 78: PM10 hourly data for the 30 September145Figure 80: AERONET_ETNA 250 m_AQUA146Figure 81: BSC-DREAM outputs on the 29 September147Figure 82: HYSPLIT model output on the Maltese islands on the 29 September taken over a period of3 daysFigure 83: HYSPLIT backward trajectory at 100 m on the 29 September150Figure 85: HYSPLIT backward trajectory at 1500 m on the 29 September151Figure 85: MODIS Terra and Aqua Level 3-Data on the 29 September153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Figure 67: Birżebbuga – PM <sub>10</sub> concentrations after subtracting Saharan dust contribution | 125      |
| Figure 70: PM10 comparison - histogram plot – Report 15.133Figure 71: PM2.5 comparison - histogram plot – Report 15134Figure 72: Marsaxlokk - PM10 vsPM2.5 histogram plot – Report 16138Figure 73: Birżebuga - PM10 vsPM2.5 histogram plot – Report 16139Figure 74: PM10 comparison - histogram plot – Report 16140Figure 75: PM2.5 comparison - histogram plot – Report 16141Figure 76: Air monitoring data plot on the days of exceedance143Figure 77: PM10 hourly data for the 29 September144Figure 78: PM10 hourly data for the 30 September145Figure 80: AERONET_ETNA 250 m _TERRA146Figure 81: BSC-DREAM outputs on the 29 September147Figure 82: HYSPLIT model output on the Maltese islands on the 29 September taken over a period of3 daysFigure 83: HYSPLIT backward trajectory at 100 m on the 29 September150Figure 85: HYSPLIT backward trajectory at 1500 m on the 29 September151Figure 85: MODIS Terra and Aqua Level 3-Data on the 29 September153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Figure 68: Marsaxlokk - PM <sub>10</sub> vsPM <sub>2.5</sub> histogram plot – Report 15             | 131      |
| Figure 71: PM2.5 comparison - histogram plot – Report 15134Figure 72: Marsaxlokk - PM10vsPM2.5 histogram plot – Report 16138Figure 73: Birżebbuġa - PM10vsPM2.5 histogram plot – Report 16139Figure 74: PM10 comparison - histogram plot – Report 16140Figure 75: PM2.5 comparison - histogram plot – Report 16141Figure 76: Air monitoring data plot on the days of exceedance143Figure 77: PM10 hourly data for the 29 September144Figure 78: PM10 hourly data for the 30 September145Figure 80: AERONET_ETNA 250m _AQUA146Figure 81: BSC-DREAM outputs on the 29 September147Figure 82: HYSPLIT model output on the Maltese islands on the 29 September taken over a period of3 daysFigure 83: HYSPLIT backward trajectory at 100 m on the 29 September150Figure 85: HYSPLIT backward trajectory at 1500 m on the 29 September151Figure 85: MODIS Terra and Aqua Level 3-Data on the 29 September153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Figure 69: Birżebbuġa - PM <sub>10</sub> vsPM <sub>2.5</sub> histogram plot – Report 15             | 132      |
| Figure 72: Marsaxlokk - PM10vsPM2.5 histogram plot - Report 16.138Figure 73: Birżebbuġa - PM10vsPM2.5 histogram plot - Report 16139Figure 74: PM10 comparison - histogram plot - Report 16140Figure 75: PM2.5 comparison - histogram plot - Report 16141Figure 76: Air monitoring data plot on the days of exceedance143Figure 77: PM10 hourly data for the 29 September144Figure 78: PM10 hourly data for the 30 September145Figure 79: AERONET_ETNA 250m_AQUA146Figure 80: AERONET_ETNA 250m_TERRA146Figure 81: BSC-DREAM outputs on the 29 September147Figure 82: HYSPLIT model output on the Maltese islands on the 29 September taken over a period of3 daysAdays148Figure 83: HYSPLIT backward trajectory at 100 m on the 29 September150Figure 85: HYSPLIT backward trajectory at 1500 m on the 29 September151Figure 86: MODIS Terra and Aqua Level 3-Data on the 29 September153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Figure 70: PM <sub>10</sub> comparison - histogram plot – Report 15                                 | 133      |
| Figure 73: Birżebbuġa - PM10 vsPM2.5 histogram plot – Report 16139Figure 74: PM10 comparison - histogram plot – Report 16140Figure 75: PM2.5 comparison - histogram plot – Report 16141Figure 76: Air monitoring data plot on the days of exceedance143Figure 77: PM10 hourly data for the 29 September144Figure 78: PM10 hourly data for the 30 September145Figure 79: AERONET_ETNA 250m_AQUA146Figure 80: AERONET_ETNA 250 m_TERRA146Figure 81: BSC-DREAM outputs on the 29 September147Figure 82: HYSPLIT model output on the Maltese islands on the 29 September taken over a period of3 daysAdays148Figure 83: HYSPLIT backward trajectory at 100 m on the 29 September151Figure 85: HYSPLIT backward trajectory at 1500 m on the 29 September152Figure 86: MODIS Terra and Aqua Level 3-Data on the 29 September153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Figure 71: PM <sub>2.5</sub> comparison - histogram plot – Report 15                                | 134      |
| Figure 74: PM10 comparison - histogram plot - Report 16140Figure 75: PM2.5 comparison - histogram plot - Report 16141Figure 76: Air monitoring data plot on the days of exceedance143Figure 77: PM10 hourly data for the 29 September144Figure 78: PM10 hourly data for the 30 September145Figure 79: AERONET_ETNA 250m _AQUA146Figure 80: AERONET_ETNA 250 m _TERRA146Figure 81: BSC-DREAM outputs on the 29 September147Figure 82: HYSPLIT model output on the Maltese islands on the 29 September taken over a period of3 days148Figure 83: HYSPLIT backward trajectory at 100 m on the 29 September150Figure 85: HYSPLIT backward trajectory at 1500 m on the 29 September151Figure 85: HYSPLIT backward trajectory at 1500 m on the 29 September152Figure 86: MODIS Terra and Aqua Level 3-Data on the 29 September153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Figure 72: Marsaxlokk - PM <sub>10</sub> vsPM <sub>2.5</sub> histogram plot – Report 16             | 138      |
| Figure 75: PM2.5 comparison - histogram plot – Report 16141Figure 76: Air monitoring data plot on the days of exceedance143Figure 76: Air monitoring data for the 29 September144Figure 77: PM10 hourly data for the 29 September144Figure 78: PM10 hourly data for the 30 September145Figure 79: AERONET_ETNA 250m _AQUA146Figure 80: AERONET_ETNA 250 m _TERRA.146Figure 81: BSC-DREAM outputs on the 29 September147Figure 82: HYSPLIT model output on the Maltese islands on the 29 September taken over a period of3 days148Figure 83: HYSPLIT backward trajectory at 100 m on the 29 September.150Figure 85: HYSPLIT backward trajectory at 1500 m on the 29 September.151Figure 86: MODIS Terra and Aqua Level 3-Data on the 29 September .153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Figure 73: Birżebbuġa - PM <sub>10</sub> vsPM <sub>2.5</sub> histogram plot – Report 16             | 139      |
| Figure 76: Air monitoring data plot on the days of exceedance143Figure 77: PM10 hourly data for the 29 September144Figure 78: PM10 hourly data for the 30 September145Figure 79: AERONET_ETNA 250m _AQUA146Figure 80: AERONET_ETNA 250 m _TERRA146Figure 81: BSC-DREAM outputs on the 29 September147Figure 82: HYSPLIT model output on the Maltese islands on the 29 September taken over a period of148Figure 83: HYSPLIT backward trajectory at 100 m on the 29 September150Figure 84: HYSPLIT backward trajectory at 500 m on the 29 September151Figure 85: HYSPLIT backward trajectory at 1500 m on the 29 September152Figure 86: MODIS Terra and Aqua Level 3-Data on the 29 September153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Figure 74: PM <sub>10</sub> comparison - histogram plot – Report 16                                 | 140      |
| Figure 77: PM10 hourly data for the 29 September144Figure 78: PM10 hourly data for the 30 September145Figure 79: AERONET_ETNA 250m_AQUA146Figure 80: AERONET_ETNA 250 m_TERRA146Figure 81: BSC-DREAM outputs on the 29 September147Figure 82: HYSPLIT model output on the Maltese islands on the 29 September taken over a period of148Figure 83: HYSPLIT backward trajectory at 100 m on the 29 September150Figure 84: HYSPLIT backward trajectory at 500 m on the 29 September151Figure 85: HYSPLIT backward trajectory at 1500 m on the 29 September152Figure 86: MODIS Terra and Aqua Level 3-Data on the 29 September153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Figure 75: PM <sub>2.5</sub> comparison - histogram plot – Report 16                                | 141      |
| Figure 78: PM10 hourly data for the 30 September145Figure 79: AERONET_ETNA 250m _AQUA146Figure 80: AERONET_ETNA 250 m _TERRA146Figure 81: BSC-DREAM outputs on the 29 September147Figure 82: HYSPLIT model output on the Maltese islands on the 29 September taken over a period of148Figure 83: HYSPLIT backward trajectory at 100 m on the 29 September150Figure 84: HYSPLIT backward trajectory at 500 m on the 29 September151Figure 85: HYSPLIT backward trajectory at 150 m on the 29 September152Figure 86: MODIS Terra and Aqua Level 3-Data on the 29 September153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Figure 76: Air monitoring data plot on the days of exceedance                                       | 143      |
| Figure 79: AERONET_ETNA 250m _AQUA146Figure 80: AERONET_ETNA 250 m _TERRA146Figure 81: BSC-DREAM outputs on the 29 September147Figure 82: HYSPLIT model output on the Maltese islands on the 29 September taken over a period of148Figure 83: HYSPLIT backward trajectory at 100 m on the 29 September150Figure 84: HYSPLIT backward trajectory at 500 m on the 29 September151Figure 85: HYSPLIT backward trajectory at 150 m on the 29 September152Figure 86: MODIS Terra and Aqua Level 3-Data on the 29 September153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Figure 77: PM <sub>10</sub> hourly data for the 29 September                                        | 144      |
| Figure 80: AERONET_ETNA 250 m _TERRA.146Figure 81: BSC-DREAM outputs on the 29 September .147Figure 82: HYSPLIT model output on the Maltese islands on the 29 September taken over a period of148Figure 83: HYSPLIT backward trajectory at 100 m on the 29 September.150Figure 84: HYSPLIT backward trajectory at 500 m on the 29 September.151Figure 85: HYSPLIT backward trajectory at 1500 m on the 29 September.152Figure 86: MODIS Terra and Aqua Level 3-Data on the 29 September .153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Figure 78: PM <sub>10</sub> hourly data for the 30 September                                        | 145      |
| Figure 81: BSC-DREAM outputs on the 29 September147Figure 82: HYSPLIT model output on the Maltese islands on the 29 September taken over a period of3 days148Figure 83: HYSPLIT backward trajectory at 100 m on the 29 September150Figure 84: HYSPLIT backward trajectory at 500 m on the 29 September151Figure 85: HYSPLIT backward trajectory at 1500 m on the 29 September152Figure 86: MODIS Terra and Aqua Level 3-Data on the 29 September153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Figure 79: AERONET_ETNA 250m _AQUA                                                                  | 146      |
| Figure 82: HYSPLIT model output on the Maltese islands on the 29 September taken over a period of3 days148Figure 83: HYSPLIT backward trajectory at 100 m on the 29 September150Figure 84: HYSPLIT backward trajectory at 500 m on the 29 September151Figure 85: HYSPLIT backward trajectory at 1500 m on the 29 September152Figure 86: MODIS Terra and Aqua Level 3-Data on the 29 September153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Figure 80: AERONET_ETNA 250 m _TERRA                                                                | 146      |
| 3 days148Figure 83: HYSPLIT backward trajectory at 100 m on the 29 September150Figure 84: HYSPLIT backward trajectory at 500 m on the 29 September151Figure 85: HYSPLIT backward trajectory at 1500 m on the 29 September152Figure 86: MODIS Terra and Aqua Level 3-Data on the 29 September153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Figure 81: BSC-DREAM outputs on the 29 September                                                    | 147      |
| Figure 83: HYSPLIT backward trajectory at 100 m on the 29 September150Figure 84: HYSPLIT backward trajectory at 500 m on the 29 September151Figure 85: HYSPLIT backward trajectory at 1500 m on the 29 September152Figure 86: MODIS Terra and Aqua Level 3-Data on the 29 September153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Figure 82: HYSPLIT model output on the Maltese islands on the 29 September taken over a p           | eriod of |
| Figure 84: HYSPLIT backward trajectory at 500 m on the 29 September151Figure 85: HYSPLIT backward trajectory at 1500 m on the 29 September152Figure 86: MODIS Terra and Aqua Level 3-Data on the 29 September153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 days                                                                                              | 148      |
| Figure 85: HYSPLIT backward trajectory at 1500 m on the 29 September                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Figure 83: HYSPLIT backward trajectory at 100 m on the 29 September                                 | 150      |
| Figure 86: MODIS Terra and Aqua Level 3-Data on the 29 September                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Figure 84: HYSPLIT backward trajectory at 500 m on the 29 September                                 | 151      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Figure 85: HYSPLIT backward trajectory at 1500 m on the 29 September                                | 152      |
| Figure 87: AERONET_ETNA 250m _AQUA154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                     |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Figure 87: AERONET_ETNA 250m _AQUA                                                                  | 154      |

| Figure 88: AERONET_ETNA 250 m _TERRA                                                       | 154     |
|--------------------------------------------------------------------------------------------|---------|
| Figure 89: BSC-DREAM outputs on the 30 September                                           | 155     |
| Figure 90: HYSPLIT model output on the Maltese islands on the 30 September taken over a pe | riod of |
| 3 days                                                                                     | 156     |
| Figure 91: HYSPLIT backward trajectory at 100 m on the 30 September                        | 158     |
| Figure 92: HYSPLIT backward trajectory at 500 m on the 30 September                        | 159     |
| Figure 93: HYSPLIT backward trajectory at 1500 m on the 30 September                       | 160     |
| Figure 94: MODIS Terra and Aqua Level 3-Data on the 30 September                           | 161     |
| Figure 95: AERONET data from Lampedusa on September                                        | 162     |
| Figure 96: Air monitoring data plot on the days of exceedance                              | 165     |
| Figure 97: - PM <sub>10</sub> hourly data for the 10th of October 2013                     | 166     |
| Figure 98: - $PM_{10}$ hourly data for the 16th of October                                 | 166     |
| Figure 99: AERONET_ETNA 250 m _TERRA                                                       | 168     |
| Figure 100: AERONET_ETNA 250 m _AQUA                                                       |         |
| Figure 101: BSC-DREAM outputs on the 10 October                                            | 169     |
| Figure 102: HYSPLIT backward trajectory at 1500m. 500m and 100 m on the 10 October         | 170     |
| Figure 103: HYSPLIT backward trajectory at 1500m on the 10 October                         | 171     |
| Figure 104: HYSPLIT backward trajectory at 500m on the 10 October                          | 172     |
| Figure 105: HYSPLIT backward trajectory at 500m on the 10 October                          | 173     |
| Figure 106: MODIS Terra and Aqua images on the 10 October                                  |         |
| Figure 107: AERONET_ETNA 250 m _TERRA                                                      | 175     |
| Figure 108: AERONET_ETNA 250 m _AQUA                                                       |         |
| Figure 109: BSC-DREAM outputs on the 16 October                                            | 176     |
| Figure 110: HYSPLIT backward trajectory at 1500. 500. 100m on the 16 October               | 177     |
| Figure 111: HYSPLIT backward trajectory at 1500m on the 16 October                         | 178     |
| Figure 112: HYSPLIT backward trajectory at 500m on the 16 October                          | 179     |
| Figure 113: HYSPLIT backward trajectory at 100m on the 16 October                          | 180     |
| Figure 114: Air monitoring data plot on the days of exceedance                             | 183     |
| Figure 115: PM <sub>10</sub> hourly data for the 19 November                               | 184     |
| Figure 116: BSC-DREAM outputs on the 19 November                                           | 186     |
| Figure 117: HYSPLIT backward trajectory at 1500m, 500m and 100 m on the 19 November        | 187     |
| Figure 118: HYSPLIT backward trajectory at 1500 m on the 19 November                       | 188     |
| Figure 119: HYSPLIT backward trajectory at 500 m on the 19 November                        | 189     |
| Figure 120: HYSPLIT backward trajectory at 100 m on the 19 November                        | 190     |
| Figure 121: Air monitoring data plot on the days of exceedance                             |         |
| Figure 122: PM <sub>10</sub> hourly data for the 18 January                                | 196     |
| Figure 123: PM <sub>10</sub> hourly data for the 19 January                                | 197     |
| Figure 124 $PM_{10}$ hourly data for the 20 January                                        | 197     |
| Figure 125: PM <sub>10</sub> hourly data for the 30 January                                | 198     |
| Figure 126: PM <sub>10</sub> hourly data for the 31 January                                | 199     |
| Figure 127: AERONET_ETNA 250m _AQUA                                                        |         |
| Figure 128: AERONET_ETNA 250m _TERRA                                                       | 200     |
| Figure 129: BSC-DREAM outputs on the 18 January                                            |         |
| Figure 130 : HYSPLIT backward trajectory at 1500m. 500m and 100 m on the 18 January        |         |
| Figure 131: HYSPLIT backward trajectory at 100m on the 18 January                          | 204     |

| Figure 122, LIVEDUT he alward trainsters at 500m on the 10 January                  | 205 |
|-------------------------------------------------------------------------------------|-----|
| Figure 132: HYSPLIT backward trajectory at 500m on the 18 January                   |     |
| Figure 133: HYSPLIT backward trajectory at 1500m on the 18 January                  |     |
| Figure 134: MODIS Terra and Aqua images on the 18 January                           |     |
| Figure 135: AERONET data from Lampedusa for January: Angstrom parameter             |     |
| Figure 136: AERONET_ETNA 250m _AQUA                                                 |     |
| Figure 137: AERONET_ETNA 250m _TERRA                                                |     |
| Figure 138: BSC-DREAM outputs on the 19 January                                     |     |
| Figure 139: HYSPLIT backward trajectory at 1500m. 500m and 100 m on the 19 January  |     |
| Figure 140: HYSPLIT backward trajectory at 100 m on the 19 January                  |     |
| Figure 141: HYSPLIT backward trajectory at 500 m on the 19 January                  |     |
| Figure 142: HYSPLIT backward trajectory at 1500 m on the 19 January                 |     |
| Figure 143: MODIS Terra and Aqua Level 3-Data on the 19 January                     |     |
| Figure 144: AERONET_ETNA 250m _AQUA                                                 |     |
| Figure 145: AERONET_ETNA 250m _TERRA                                                |     |
| Figure 146: BSC-DREAM outputs on the 20 January 2014                                | 219 |
| Figure 147: Backward trajectory at 1500m. 500m and 100 m on the 20 January          | 221 |
| Figure 148: HYSPLIT backward trajectory at 100 m on the 20 January                  | 222 |
| Figure 149: HYSPLIT backward trajectory at 500 m on the 20 January                  | 223 |
| Figure 150: HYSPLIT backward trajectory at 1500 m on the 20 January                 | 224 |
| Figure 151: MODIS Terra and Aqua Level 3-Data on the 20 January                     | 225 |
| Figure 152: AERONET_ETNA 250m _AQUA                                                 | 226 |
| Figure 153: AERONET_ETNA 250m _TERRA                                                | 226 |
| Figure 154: BSC-DREAM outputs on the 30 January                                     | 227 |
| Figure 155 : HYSPLIT backward trajectory at 1500m. 500m and 100 m on the 30 January | 228 |
| Figure 156: HYSPLIT backward trajectory at 100m on the 30 January                   | 229 |
| Figure 157: HYSPLIT backward trajectory at 500m on the 30 January                   | 230 |
| Figure 158: HYSPLIT backward trajectory at 1500m on the 30 January                  | 231 |
| Figure 159: MODIS Terra and Aqua images on the 30 January                           | 232 |
| Figure 160: AERONET_ETNA 250m _AQUA                                                 | 233 |
| Figure 161: AERONET_ETNA 250m _TERRA                                                | 233 |
| Figure 162: BSC-DREAM outputs on the 31 January                                     | 234 |
| Figure 163 : HYSPLIT backward trajectory at 1500m. 500m and 100 m on the 31 January | 235 |
| Figure 164: HYSPLIT backward trajectory at 100m on the 31 January                   | 237 |
| Figure 165: HYSPLIT backward trajectory at 500m on the 31 January                   | 238 |
| Figure 166: HYSPLIT backward trajectory at 1500m on the 31 January                  | 239 |
| Figure 167: MODIS Terra and Aqua images on the 31 January                           | 241 |
| Figure 168: Air monitoring data plot on the days of exceedance                      | 244 |
| Figure 169: PM <sub>10</sub> hourly data for the 1 February                         |     |
| Figure 170: PM <sub>10</sub> hourly data for the 10 February                        |     |
| Figure 171: - PM <sub>10</sub> hourly data for the 20 February 2014                 | 246 |
| Figure 172: - PM <sub>10</sub> hourly data for the 21 February 2014                 |     |
| Figure 173: AERONET_ETNA 250m _AQUA                                                 |     |
| Figure 174: AERONET_ETNA 250m _TERRA                                                |     |
| Figure 175: BSC-DREAM outputs on the 1 <sup>st</sup> January                        |     |
| Figure 176 : HYSPLIT backward trajectory at 1500m. 500m and 100 m on the 1 February |     |
|                                                                                     |     |

| Figure 177: HYSPLIT backward trajectory at 100m on the 1 February                    | 252 |
|--------------------------------------------------------------------------------------|-----|
| Figure 177: HTSPLIT backward trajectory at 100m on the 1 February                    |     |
| Figure 179: HYSPLIT backward trajectory at 1500m on the 1 February                   |     |
| Figure 180: MODIS Terra and Aqua images on the 1 February.                           |     |
| Figure 181: AERONET_ETNA 250m _AQUA                                                  |     |
| Figure 182: AERONET_ETNA 250m _TERRA                                                 |     |
| Figure 183: BSC-DREAM outputs on the 10 February                                     |     |
| Figure 184 : HYSPLIT backward trajectory at 1500m, 500m and 100 m on the 10 February |     |
| Figure 185: HYSPLIT backward trajectory at 100m on the 10 February                   |     |
| Figure 186: HYSPLIT backward trajectory at 500m on the 10 February                   |     |
| Figure 187: HYSPLIT backward trajectory at 1500m on the 10 February                  |     |
| Figure 188: MODIS Terra and Aqua images on the 10 February                           |     |
| Figure 189: AERONET_ETNA 250m _AQUA                                                  |     |
| Figure 190: AERONET_ETNA 250m _TERRA                                                 |     |
| Figure 191: BSC-DREAM outputs on the 20 February                                     |     |
| Figure 192 : HYSPLIT backward trajectory at 1500m, 500m and 100 m on the 20 February |     |
| Figure 193: HYSPLIT backward trajectory at 100m on the 20 February                   |     |
| Figure 194: HYSPLIT backward trajectory at 500m on the 20 February                   |     |
| Figure 195: HYSPLIT backward trajectory at 1500m on the 20 February                  |     |
| Figure 196: MODIS Terra and Aqua images on the 20 February.                          |     |
| Figure 197: AERONET_ETNA 250m _AQUA                                                  |     |
| Figure 198: AERONET_ETNA 250m _TERRA                                                 |     |
| Figure 199: BSC-DREAM outputs on the 21 February                                     |     |
| Figure 200 : HYSPLIT backward trajectory at 1500m, 500m and 100 m on the 21 February |     |
| Figure 201: HYSPLIT backward trajectory at 100m on the 21 February                   |     |
| Figure 202: HYSPLIT backward trajectory at 500m on the 21 February                   |     |
| Figure 203: HYSPLIT backward trajectory at 1500m on the 21 February                  |     |
| Figure 204: MODIS Terra and Aqua images on the 21 February                           |     |
| Figure 205: Air monitoring data plot on the days of exceedance                       |     |
| Figure 206: PM <sub>10</sub> hourly data for the 14 March                            |     |
| Figure 207: AERONET_ETNA 250m _AQUA                                                  |     |
| Figure 208: AERONET_ETNA 250m _TERRA                                                 |     |
| Figure 209:BSC-DREAM outputs on the 14 March.                                        |     |
| Figure 210 : HYSPLIT backward trajectory at 1500m. 500m and 100 m on the 14 March    |     |
| Figure 211: HYSPLIT backward trajectory at 100m on the 14 March.                     |     |
| Figure 213: HYSPLIT backward trajectory at 1500m on the 14 March.                    |     |
| Figure 214: MODIS Terra and Aqua images on the 14 March.                             |     |
|                                                                                      |     |

# List of Tables

| Table 1: Monitored Pollutants                                                            |     |
|------------------------------------------------------------------------------------------|-----|
| Table 2: PM <sub>10</sub> and PM <sub>2.5</sub> data for Marsaxlokk Station Report 1     |     |
| Table 3: $PM_{10}$ and $PM_{2.5}$ data for Birżebbuga Station Report 1                   |     |
| Table 4: PM <sub>10</sub> and PM <sub>2.5</sub> data for Marsaxlokk station Report 2     |     |
| Table 5: PM <sub>10</sub> and PM <sub>2.5</sub> data for Birżebbuġa station Report 2     |     |
| Table 6: PM <sub>10</sub> and PM <sub>2.5</sub> data for Marsaxlokk station Report 3     |     |
| Table 7: PM <sub>10</sub> and PM <sub>2.5</sub> data for Birżebbuġa station Report 3     |     |
| Table 8: PM <sub>10</sub> and PM <sub>2.5</sub> data for Marsaxlokk station – Report 4   |     |
| Table 9: $PM_{10}$ and $PM_{2.5}$ data for Birżebbuga station – Report 4                 |     |
| Table 10: $PM_{10}$ and $PM_{2.5}$ data for Marsaxlokk station – Report 5                | 40  |
| Table 11: PM <sub>10</sub> and PM <sub>2.5</sub> data for Birżebbuġa station – Report 5  | 41  |
| Table 12: PM <sub>10</sub> and PM <sub>2.5</sub> data for Marsaxlokk station – Report 6  | 47  |
| Table 13: PM <sub>10</sub> and PM <sub>2.5</sub> data for Birżebbuġa station – Report 6  |     |
| Table 14. Metals data for Marsaxlokk station – October                                   | 53  |
| Table 15. Metals data for Birżebbuġa station – October                                   | 54  |
| Table 16: PM <sub>10</sub> and PM <sub>2.5</sub> data for Marsaxlokk station – Report 7  |     |
| Table 17: PM <sub>10</sub> and PM <sub>2.5</sub> data for Birżebbuġa station – Report 7  | 57  |
| Table 18: Determination of the African dust load.                                        | 62  |
| Table 19: Determination of the source for PM <sub>10</sub> exceedances                   | 62  |
| Table 20: PM <sub>10</sub> adjusted values for Marsaxlokk station – Report 7             | 63  |
| Table 21: PM <sub>10</sub> adjusted values for Birżebbuġa station – Report 7             | 64  |
| Table 22: PM <sub>10</sub> and PM <sub>2.5</sub> data for Marsaxlokk station – Report 9  | 69  |
| Table 23: PM <sub>10</sub> and PM <sub>2.5</sub> data for Birżebbuġa station – Report 9  | 70  |
| Table 24: PM <sub>10</sub> and PM <sub>2.5</sub> data for Marsaxlokk station – Report 10 | 76  |
| Table 25: PM <sub>10</sub> and PM <sub>2.5</sub> data for Birżebbuġa station – Report 10 | 77  |
| Table 26: PM <sub>10</sub> and PM <sub>2.5</sub> data for Marsaxlokk station – Report 11 | 83  |
| Table 27: PM <sub>10</sub> and PM <sub>2.5</sub> data for Birżebbuġa station – Report 11 |     |
| Table 28: Determination of the African dust load                                         |     |
| Table 29: Determination of the source for $PM_{10}$ exceedances                          |     |
| Table 30: PM <sub>10</sub> adjusted values for Marsaxlokk station – Report 11            | 90  |
| Table 31: PM <sub>10</sub> adjusted values for Birżebbuga station – Report 11            | 91  |
| Table 32: PM <sub>10</sub> and PM <sub>2.5</sub> data for Marsaxlokk station – Report 12 | 94  |
| Table 33: PM <sub>10</sub> and PM <sub>2.5</sub> data for Birżebbuga station – Report 12 | 95  |
| Table 34: Determination of the African dust load                                         | 100 |
| Table 35: Determination of the source for $PM_{10}$ exceedances                          |     |
| Table 36: PM <sub>10</sub> adjusted values for Marsaxlokk station – Report 12            |     |
| Table 37: PM <sub>10</sub> adjusted values for Birżebbuga station – Report 12            |     |
| Table 38: PM <sub>10</sub> and PM <sub>2.5</sub> data for Marsaxlokk station – Report 13 |     |
| Table 39: PM <sub>10</sub> and PM <sub>2.5</sub> data for Birżebbuga station – Report 13 |     |
| Table 40: Determination of the African dust load                                         |     |
| Table 41: Determination of the source for $PM_{10}$ exceedances                          |     |
| Table 42: PM <sub>10</sub> adjusted values for Marsaxlokk station – Report 13            |     |
| Table 43: $PM_{10}$ adjusted values for Birżebbuga station – Report 13                   |     |
|                                                                                          | -   |

| Table 44: PM <sub>10</sub> and PM <sub>2.5</sub> data for Marsaxlokk station – Report 14 |  |
|------------------------------------------------------------------------------------------|--|
| Table 45: PM <sub>10</sub> and PM <sub>2.5</sub> data for Birżebbuġa station – Report 14 |  |
| Table 46: Determination of the African dust load                                         |  |
| Table 47: Determination of the source for PM <sub>10</sub> exceedances                   |  |
| Table 48: PM <sub>10</sub> adjusted values for Marsaxlokk station – Report 14            |  |
| Table 49: PM <sub>10</sub> adjusted values for Birżebbuġa station – Report 14            |  |
| Table 50. Metals data for Marsaxlokk station – February                                  |  |
| Table 51. Metals data for Birżebbuġa station – February                                  |  |
| Table 52: PM <sub>10</sub> and PM <sub>2.5</sub> data for Marsaxlokk station – Report 15 |  |
| Table 53: PM <sub>10</sub> and PM <sub>2.5</sub> data for Birżebbuġa station – Report 15 |  |
| Table 54: PM <sub>10</sub> and PM <sub>2.5</sub> data for Marsaxlokk station – Report 16 |  |
| Table 55: PM <sub>10</sub> and PM <sub>2.5</sub> data for Birżebbuġa station – Report 16 |  |
| Table 56: $PM_{10}$ measurements on the 29 and 30 September                              |  |
| Table 57: PM <sub>10</sub> measurements on the 10 and 16 of October                      |  |
| Table 58: PM <sub>10</sub> measurements on the 19 November                               |  |
| Table 59: $PM_{10}$ measurements on the 18, 19 and 20 January 2014                       |  |
| Table 60: PM <sub>10</sub> measurements on 1 and 10 February 2014                        |  |
| Table 61: PM <sub>10</sub> measurements on the 14 March 2014                             |  |

## 1. Introduction

The main objective of this project is to assess the air quality in the two localities of Marsaxlokk and Birżebbuga which are in close proximity to the Delimara power station operated by Enemalta.

The power station is subjected to an Integrated Pollution Prevention and Control (IPPC) permit issued by the Malta Environment and Planning Authority and as part of the IPPC conditions, air quality monitoring was requested. According to the MEPA specifications, the monitoring campaign will determine the daily concentration of  $PM_{10}$  and  $PM_{2.5}$ , near Delimara power station, in compliance with the standards specified in LN 478 of 2010 (*Ambient Air Quality Regulations*).

This monitoring programme has been ongoing since April 2012 at the two locations: Marsaxlokk and Birżebbuġa. MEPA also requested to monitor the concentrations of Arsenic, Cadmium, Nickel, Lead and Vanadium on a quarterly basis to evaluate the amount of these metals present in the  $PM_{10}$  filters. An extension to this study was approved by Enemalta from 4 September 2013 until March 2014. The same methodology as that applied for the air quality monitoring programme between April 2012 and June 2013, will be conducted in this extension.

L.N. 478/2010 transposes the Directive 2004/107/EC relating to Arsenic, Cadmium, Mercury and Nickel and Polycyclic Aromatic Hydrocarbons in ambient air and Directive 2008/50/EC on ambient air quality and cleaner air for Europe. L.N. 478/2010 specifies the limit values to be achieved and the reference methods for sampling and measuring all the monitoring parameters analyzed in this study.

Specifically, the monitoring parameters are derived through the standard gravimetric sampling method which consists of aspiring ambient air at a constant flow rate and force it to pass through a membrane filter that captures all the particulate matter with a diameter smaller than 10 $\mu$ m or 2.5 $\mu$ m, according to the sampling head used. The filter is changed automatically every 24 hours and because of this, the laboratory analysis give as result an average daily concentration in  $\mu$ g/m<sup>3</sup>, derived by the division of the different filter weight (before and after the sampling) by the actual air sampling volume. The construction characteristics of the sampling instrument have to conform to the criteria determined in the reference methods EN12341 and EN14907 for the measurement of PM<sub>10</sub> and PM<sub>2.5</sub> concentration, respectively.

Power stations are one of the major primary sources of  $PM_{10}$  and  $PM_{2.5}$  emissions in the atmosphere. This monitoring is required to assess the direct influence of the Delimara power station on the air quality in the surrounding area.



#### 1.1. Sampling Points

Delimara power station is located in the southern area of the island. An extension to the Power Station was built in 2012 having a capacity of 144MW within the boundary of the existing plant. The eight diesel engines could be operated using either 0.7% sulphur heavy fuel oil (HFO) or gasoil. The current operation of the extension is on HFO and thus the air quality monitoring results are required in order to assess the environmental impact of this fuel. The power block is made up of four trains. Each train contains two diesel engines, two silencers, two DeNO<sub>x</sub> units (SCR), two exhaust gas boilers (EGB) and one common DeSO<sub>x</sub> unit (FGD). Each FGD unit is made up of one reactor and one bag filter system.



Figure 1: Location of Delimara Power Station






Figure 2: Delimara Power Station

Figures 3 and 4 show the position of the instrumentation in Marsaxlokk whereby the two samplers were placed in the balcony at the local council offices. In Birżebbuġa, the instrumentation was placed on the rooftop of the Enemalta fuel deposit. This respects the EN12341 method, which requires that the sampling height has to be between 1.5 to 8 m from the ground.





Figure 3: Location of the Monitoring Sites



Figure 4: Birżebbuġa





Figure 5: Marsaxlokk

#### **1.2. Technical Specifications**

#### 1.2.1. Duration of Monitoring

The duration of this monitoring campaign is seven months. The campaign has started, for each station, on the 4<sup>th</sup> September 2013 at 00:05 and it will be ending on the 1th April 2014 at 23:55. The monitoring programme provides for continuous sampling without interruption.

The samples are analysed in an accredited laboratory: ambiente s.c. Results are presented every fortnight as requested by MEPA. The contribution of Saharan dust is also evaluated according to EU guidelines when an exceedance is recorded, as described in Section 1.4. This contribution is then deducted in order to correct for such natural aerosols.

#### 1.2.2. Monitoring parameters and Time Schedule

A summary of the monitored pollutants is given in the following table. All these pollutants are detected daily in each monitoring site, through gravimetric ( $PM_{10}$  and  $PM_{2.5}$ ) and chemical (metals) analysis conducted on the sample filter. The metals are analyzed in the  $PM_{10}$  fraction on a quarterly basis (four times in one calendar year). Each metals survey consists of 30 days of continuous monitoring every three months in order to cover the seasonal variation.





| Pollutants          | Sampler       | Filter type   | Limit value (L.N. 478/2010) |                                                                      | Reference method for sampling and measurement    |
|---------------------|---------------|---------------|-----------------------------|----------------------------------------------------------------------|--------------------------------------------------|
| PM <sub>10</sub>    | SKYPOST PM HV | Quartz fibers | One day                     | $50 \ \mu m/m^3$ not to be exceed more than 35 times a calendar year | EN 12341                                         |
|                     |               |               | Calendar year               | 40 μm/m <sup>3</sup>                                                 |                                                  |
| PM <sub>2.5</sub>   | SKYPOST PM HV | Quartz fibers | Calendar year               | 25 μm/m³                                                             | EN 14907                                         |
|                     |               |               | As <sup>1</sup>             | 6 ng/ m <sup>3</sup>                                                 |                                                  |
| Metals              | SKYPOST PM HV | Quartz fibers | Cd <sup>1</sup>             | 5 ng/ m <sup>3</sup>                                                 | EN 14902:2005; EPA 6020A 2007;<br>EPA 6010C 2007 |
| (As, Cd, Pb, Ni, V) |               |               | Ni <sup>1</sup>             | 20 ng/ m <sup>3</sup>                                                |                                                  |
|                     |               |               | Pb                          | 500 ng/ m <sup>3</sup>                                               |                                                  |

**Table 1: Monitored Pollutants** 

<sup>&</sup>lt;sup>1</sup> Target value: level fixed with the aim of avoiding, preventing or reducing harmful effects on human health or the environment as a whole, to be attained where possible over a given period. It is determined for the total content in the PM10 fraction averaged over a calendar year.



#### 1.3. Standards and Guidelines

L.N. 478/2010 determines the reference methods, known as European Norm (EN) that must be applied for sampling and measuring the pollutants in ambient air in Malta. These technical specifications are developed by the European Committee for Standardization, which is a European Institute that develops and uniforms norms and procedures in any technical field. To conduct this monitoring campaign, the following EN specifications have been applied:

- Reference method for the sampling and measurement of PM<sub>10</sub>: EN 12341:1999 "Determination of the PM<sub>10</sub> fraction of suspended particulate matter"
- Reference method for the sampling and measurement of PM<sub>2.5</sub>: EN 14907:2005 "Standard gravimetric measurement method for the determination of the PM<sub>2.5</sub> mass fraction of suspended particulate matter"
- Reference method for measurement of Pb/Cd/As/Ni in the PM<sub>10</sub> fraction of suspended matter: EN 14902:2005 "Standard method for the measurement of Pb, Cd, As and Ni in the PM<sub>10</sub> fraction of suspended particulate matter"

These methods have to be fulfilled in order to carry out a certified air quality monitoring campaign that respects the common standard regulations for the European countries.

#### 1.4. Methodology for the Identification of Saharan Dust

Desert aerosols are probably the most abundant and massive type of particles that are present in the atmosphere worldwide. The methodology for the identification and quantification of Saharan dust will follow the same procedure done in the previous reports based on EU guidelines.

The occurrence of Sahara dust (SD) events above Mediterranean has a marked seasonal cycle, mainly driven by the intense cyclones called Sharav, south of the Atlas Mountains (Morocco). In spring the Sharav cyclones carry desert dust towards Eastern Mediterranean, while in summer the most intense activity occurs in the central part; by the end of the summer a low-pressure system over the Balearic Islands drives the dust plumes towards the Western Mediterranean.

The identification of the contribution of natural sources to particulate matter concentration in air quality studies within the text of the Directive 2008/50/EC as an independent and not manageable cause of pollution allows that those days in which the contribution determines the exceedance of the air quality standard, it would not classified as such.

The reference standard identifies six main principles that should be followed in the method applied to identify the natural source event as follows:

- 1. the contributions must not be caused by direct or indirect human activities;
- 2. the quantification of the natural contribution must be sufficiently precise;
- 3. the quantification of the natural contribution must be consistent with the averaging period of the limit value;
- 4. the quantification of the natural sources must be spatially attributed;
- 5. the contributions must be demonstrated based on a systematic assessment process;
- 6. the quantification of the natural sources must be demonstrated for each pollutant separately.



ingegneria ambientale e laboratori

Due to the above key principles, the proposed methodology for natural event in Malta, in particular for transport of natural particles from dry regions and wind-blown dust is developed by referring to the following assumptions:

- multiple sources/references/modeling applications contribute to the natural event identification;
- all the steps (measurement and calculation/modeling) for the natural event will be described in an operational procedure;
- The natural source contribution will be reported with uncertainties in the quantification.

European Commission published in 2011 the guidelines for demonstration and subtraction of exceedances attributable to natural sources (<u>http://ec.europa.eu/environment/air/quality/legislation</u>/pdf/sec\_2011\_0208.pdf).

The identification of Saharan Dust Events in this report involved the following steps:

- 1. Measurement correlations between the PM<sub>10</sub> readings in all stations (Marsaxlokk and Birżebbuġa, Għarb, Kordin, Żejtun and Msida)
- 2. Satellite images, because the exceedances resulting from Marsaxlokk and Birżebbuġa have to be correlated with satellite imagery.
- 3. Application of the model: Hysplit.

Malta is significantly affected by the Saharan sandstorm events and this contribution shall be assessed and subtracted from the total PM concentration, as determined in the Directive 2008/50/EC. European Commission published in 2011 the guidelines for demonstration and subtraction of exceedances attributable to natural sources <u>http://ec.europa.eu/environment/air/quality/legislation /pdf/sec\_2011\_0208.pdf</u>).

In this document, a methodology to be followed in order to identify and quantify African dust contribution is described. The procedure is based on a method developed in Spain and Portugal for application in both countries and it was scientifically validated through chemical speciation analysis. In fact, since the PM from Saharan region is mainly constituted by quartz, calcite, dolomite and clay minerals, direct analysis of Ca,  $AI_2O_3$ ,  $Fe_2O_3$ , K, Mg, and the indirect determination of Si ( $3 \times AI_2O_3 = SiO_2$ ) and  $CO_3^{2-}(1.5 \times Ca + 2.5 \times Mg = CO_3^{2-})$  allows the determination of the mineral load contributed by the Sahara. The identification of the occurrence and duration of the Saharan episodes is based on the interpretation of the meteorological data, atmospheric model outputs and also information on the levels of  $PM_{10}$  measured with real-time equipment. Further specific details on the identification process of the Saharan episodes can be found in the EC guidelines (see above link). Once the days affected by African dust have been identified, the quantitative contribution ( $\mu$ g/m<sup>3</sup>) is determined as follows:

• Calculation of the monthly moving percentile 40 of the  $PM_{10}$  at the regional background site. The use of this indicator reproduces well the background concentration for  $PM_{10}$  in Iberian Peninsula but it has not been validated in other countries. Because of this, to determine the background



concentration in Malta, a more conservative indicator was used in this report: the moving 50 percentile of 30 days for the  $PM_{10}$  concentrations was used.

- The net African dust load at this regional background station is determined subtracting the indicator from the PM<sub>10</sub> bulk levels recorder during the 'Saharan' day.
- Then, the net African dust load is subtracted from the PM<sub>10</sub> concentrations, measured in the other monitoring stations, resulted above the daily limit. If the concentration remains above the daily limit values it means that this exceedances can be attributed to human sources otherwise it can be attributed to natural sources.

In Malta, the Gharb station is used as regional background monitoring site. The Saharan dust episodes and their quantitative contributions throughout the monitoring period are reported in the result section.

#### 1.5. Monitoring Procedure

The same instruments for  $PM_{10}$  and  $PM_{2.5}$  monitoring used for the previous report are being used for this extension too, thus the section providing all the details of the instrumentation has not been included in this report. The field activities performed before the beginning of the sampling campaign, for both the  $PM_{10}$  and  $PM_{2.5}$  measurements were the following:

- SKYPOSTs were located in the chosen monitoring sites, the technician set up the power connection between the sampler and the power supply available in situ.
- The clean filter reservoir was unsealed and screwed in the proper ring and connected to the pneumatic tube. The clean filter reservoir arrived directly from ambiente s.c. laboratory, where in an uncontaminated environment the clean filters were inserted in each cassette and then placed in the cylinder following an order that associated the position in the cylinder with the filter code (no mark was made on the filter to prevent possible alteration of the chemical analysis). These clean filter reservoirs were sealed and shipped from ambiente s.c. laboratory to Malta in protected and isolated boxes. The methodology of filter preparation, classification and handling in the lab is described in the next paragraph.
- Then, the technician set up the duration of the campaign (7 months from the 4<sup>th</sup> September 2013 to the 1<sup>st</sup> April 2014) and the time interval between filter change (24h from 0:05 to 23:552).

During the whole duration of the monitoring campaign, the field activities are listed below:

• Every 15<sup>th</sup> day of monitoring, the exposed filter reservoir is collected and replaced with an empty one. Then, this cylinder is immediately sealed and inserted into a small container to protect it from possible damage during handling and transportation from the site to the laboratory.

2 The stop time of 10 minutes was set up to allow the machine to perform the filter change. It has to be noted that the monitoring time is largely within the daily minimum capture data (90%).





Figure 6: Petri Dish containing a filter cassette and an exposed filter

• Every 15<sup>th</sup> day of monitoring, before leaving the sites, the technician downloads the monitoring report details from the sampler (stop time, flow rate, air sample volume, atmospheric pressure and temperature) that are required to determine the validation of the monitored parameters. Besides, the instrument memory is reset to avoid loss of sampling data due to insufficient memory capacity.

#### **1.6.** Maintenance Operations

- Every 15<sup>th</sup> day of monitoring, the technician has to clean and grease the inlet impaction plate using a silicone gel, as requested by the EN 12341 and EN14907. During this process, it has to be assured that the suction tube is completely sealed and no air enters the tube because the 15th filter is present in the sampling position. The time interval, in which the sampling is stopped, cannot to exceed 10% of the day time, thus no more than 144 minutes. Otherwise, the 15<sup>th</sup> filter would not be valid. Finally, the technician dismounts and cleans the cap, the distributer-disk and the water container.
- Every month, the technician dismounts and cleans the nozzles.
- Every three months, the flow meter calibration and leak tests are performed for each sampler to assure the quality of the measurements.
- Every six months of monitoring (e.g. one time in this campaign), an intensive cleaning of the sampling head (sampler inlet, suction pipe, filter change mechanism, filter cassettes, nozzles) has to be performed, this has to be made in compliance with the EN 14902.



#### **1.7. Laboratory Activities**

The laboratory activity can be subdivided in two main phases:

- 1. Preparation of the clean filters
- 2. Analysis of the exposed filters

Both procedures were described in detail in the previous report and given that the same method shall be adopted, this section provides only a brief overview.

#### 1.7.1. Preparation of the Clean Filters

For this monitoring campaign, filters made by quartz fibres are used, with an aerodynamic diameter of 0.22  $\mu$ m. This type of filter is in compliance with the filter specifications stated in the reference methods. The filter characteristics are in compliance with the EN 12341, EN14907 and EN 14902.

#### 1.7.2. Analysis of the Exposed Filters

The cylinder with the exposed filters is returned to the laboratory and is checked in terms of physical integrity and then stored in an uncontaminated weighing room to proceed with the laboratory analysis.



Figure 7: Exposed Filter (left) and Unexposed Filter (right)

The filters are analyzed to determine the PM<sub>10</sub> and PM<sub>2.5</sub> concentrations by gravimetric method:

*PM*<sub>10</sub> and *PM*<sub>2.5</sub> determination: filters are exposed, as for the unexposed filters, in a conditioning room at a temperature of 20°C and relative humidity of 50% for 120 hours in order to reach the equilibrium. After that, these are weighed using the analytical balance. Finally, the PM concentration is determined by the following formula:



AIR QUALITY MONITORING AT MARSAXLOKK AND BIRŻEBBUĠA

 $C_{PM} = (W_{EF} - W_{UF}) / V$ Where:  $C_{PM} = PM \text{ concentration in } (\mu g/m^3)$   $W_{EF} = \text{Weight of the exposed filter } (\mu g)$   $W_{UF} = \text{Weight of the unexposed filter } (\mu g)$   $V = \text{Actual sampling volume } (m^3)$ 

The concentration of the metals is determined in the following way:

*Metals determination:* the sample filter is taken in solution by closed vessel microwave digestion using nitric acid and hydrogen peroxide. The resultant solution is analyzed by Inductively Coupled Plasma – Mass Spectrometry (ICP-MS). The laboratory is equipped with ICP-MS Agilent Technologies S.p.A. – 7500cx



# 2. Results

The monitoring results of  $PM_{10}$  and  $PM_{2.5}$  are reported every two weeks in tabular format, compatible with schedule 2 and schedule 4 of the IPPC permit IP/002/07/B, and plots are also drawn up to make a comparative study between the two different PM parameters and the monitoring sites (Marsaxlokk and Birżebbuġa). Results for the metal analysis are determined on a quarterly basis and these are also reported in tablular format for the months monitored (Oct '13 and Feb '14).

All the sampling details (start and stop time, flow rate, actual and standard volume, atmospheric temperature and pressure) are reported in Annex A for each monitoring station. Non valid measurements, due to monitoring problems (e.g. power interruption, daily sampling volume not correct, etc.), are classified with the abbreviation *NV* in the following tables. The daily meteorological conditions gathered from the Malta International Airport are shown in Annex B.

#### 2.1. Report 1

The data period of this first report starts on the 4<sup>th</sup> September 2013 to 12<sup>th</sup> September 2013, for an effective duration of 8 sampling days. Non valid measurements, due to power interruption, were registered on the 4, 6, 7, 8 and 9 of September 2013 in Marsaxlokk.

During this sampling period no exceedances of the daily limit value of 50  $\mu$ g/m<sup>3</sup> for PM<sub>10</sub> were measured.

The average  $PM_{10}$  concentration was higher in Birżebbuġa when compared to Marsaxlokk on the 4, 5, 10 and 11 of September. Regarding  $PM_{2.5}$  there are not enough data in Marsaxlokk to make a relevant comparison.

The results of this monitoring period are given in the next paragraphs, which are first presented in tabular format in the following order:

- 1. Marsaxlokk station:  $PM_{10} \& PM_{2.5}$ ;
- 2. Birżebbuġa station: PM<sub>10</sub> & PM<sub>2.5</sub>;

Then, a series of significant plot comparisons are reported:

- PM<sub>10</sub> vs PM<sub>2.5</sub> at Marsaxlokk station;
- PM<sub>10</sub> vs PM<sub>2.5</sub> at Birżebbuġa station;
- PM<sub>10</sub> *vs* PM<sub>10</sub>;
- PM<sub>2.5</sub> vs PM<sub>2.5</sub>;



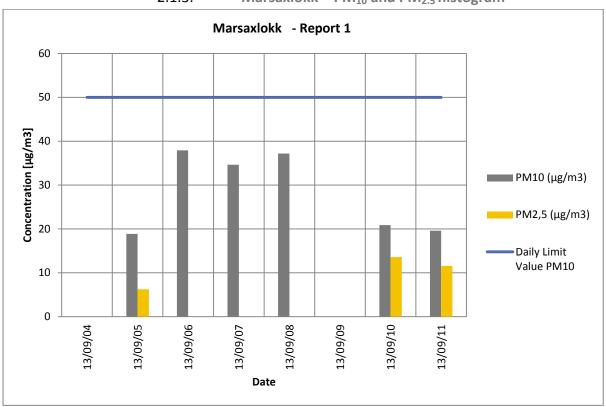
| 2.1.1.          | 2.1.1.                  |                             |                                           |  |  |  |
|-----------------|-------------------------|-----------------------------|-------------------------------------------|--|--|--|
| Day             | Date                    | ΡΜ <sub>10</sub><br>(μg/m³) | ΡΜ <sub>2.5</sub><br>(µg/m <sup>3</sup> ) |  |  |  |
| Wednesday       | 13/09/04                | <i>N.V.</i> <sup>3</sup>    | N.V                                       |  |  |  |
| Thursday        | 13/09/05                | 18.87                       | 6.24                                      |  |  |  |
| Friday          | Friday 13/09/06         |                             | N.V.                                      |  |  |  |
| Saturday        | Gaturday 13/09/07       |                             | N.V.                                      |  |  |  |
| Sunday          | 13/09/08                | 37.18                       | N.V.                                      |  |  |  |
| Monday 13/09/09 |                         | N.V.                        | N.V.                                      |  |  |  |
| Tuesday         | uesday 13/09/10         |                             | 13.57                                     |  |  |  |
| Wednesday       | 13/09/11                | 19.60                       | 11.55                                     |  |  |  |
| Average dur     | ing reporting period    | 28.18                       | 10.45                                     |  |  |  |
|                 | calendar year (to date) | 28.18                       | 10.45                                     |  |  |  |

2.1.1. Marsaxlokk – PM<sub>10</sub> and PM<sub>2.5</sub>

Table 2: PM<sub>10</sub> and PM<sub>2.5</sub> data for Marsaxlokk Station Report 1

 $^3$  Non valid due to power interruption. Same reason applicable to the rest of the N.V. data

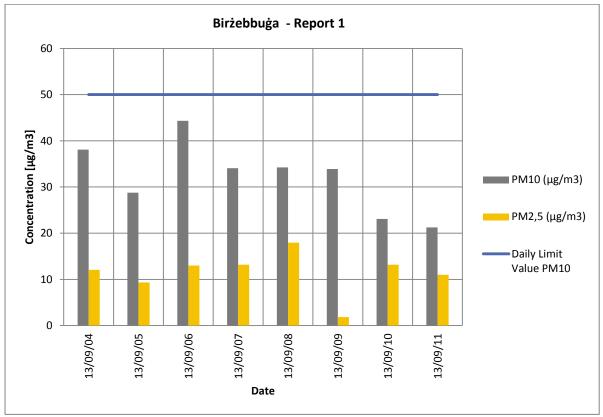



| 2.1.2. $\text{Dil } 2 \text{ cubu ga} = \text{Pivi}_{10} \text{ all u Pivi}_{2.5}$ |                         |                             |                                           |  |
|------------------------------------------------------------------------------------|-------------------------|-----------------------------|-------------------------------------------|--|
| Day                                                                                | Date                    | ΡΜ <sub>10</sub><br>(μg/m³) | ΡΜ <sub>2.5</sub><br>(μg/m <sup>3</sup> ) |  |
| Wednesday                                                                          | 13/09/04                | 38.09                       | 12.08                                     |  |
| Thursday                                                                           | 13/09/05                | 28.76                       | 9.34                                      |  |
| Friday                                                                             | 13/09/06                | 44.33                       | 13.00                                     |  |
| Saturday                                                                           | 13/09/07                | 34.07                       | 13.18                                     |  |
| Sunday                                                                             | 13/09/08                | 34.25                       | 17.94                                     |  |
| Monday                                                                             | 13/09/09                | 33.88                       | 1.83                                      |  |
| Tuesday                                                                            | 13/09/10                | 23.07                       | 13.18                                     |  |
| Wednesday                                                                          | 13/09/11                | 21.24                       | 10.98                                     |  |
| Thursday                                                                           | 13/09/12                | 38.09                       | 12.08                                     |  |
| Average dur                                                                        | ing reporting period    | 32.21                       | 11.44                                     |  |
| Average during                                                                     | calendar year (to date) | 32.21                       | 11.44                                     |  |

2.1.2. Birżebbuġa – PM<sub>10</sub> and PM<sub>2.5</sub>

Table 3:  $\ensuremath{\mathsf{PM}_{10}}$  and  $\ensuremath{\mathsf{PM}_{2.5}}$  data for Birżebbuġa Station Report 1

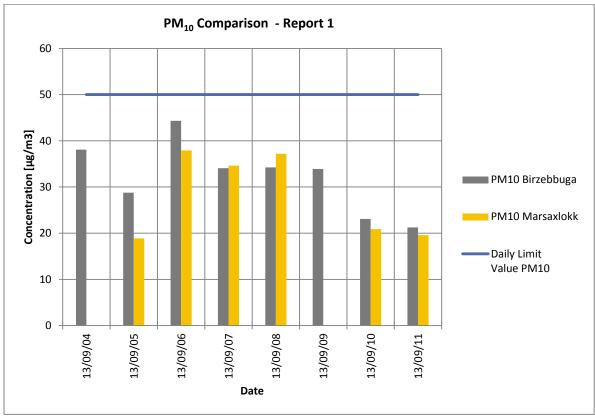



## AIR QUALITY MONITORING AT MARSAXLOKK AND BIRŻEBBUĠA



2.1.3. Marsaxlokk – PM<sub>10</sub> and PM<sub>2.5</sub> histogram

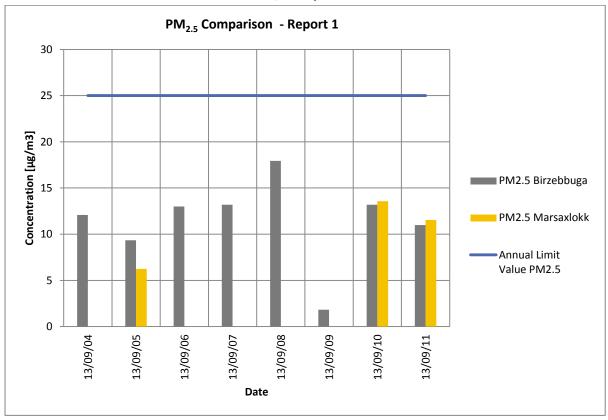
Figure 8: Marsaxlokk – PM<sub>10</sub> vs PM<sub>2.5</sub> histogram plot Report 1






2.1.4. Birżebbuġa – PM<sub>10</sub> and PM<sub>2.5</sub> histogram

Figure 9: Birżebbuġa – PM<sub>10</sub> vs PM<sub>2.5</sub> histogram plot Report 1






2.1.5. PM<sub>10</sub> Comparison

Figure 10: PM<sub>10</sub> Comparison Histogram plot Report 1





2.1.6. PM<sub>2.5</sub> Comparison

Figure 11: Marsaxlokk – PM<sub>10</sub> vs PM<sub>2.5</sub> histogram plot Report 1



#### 2.2. Report 2

The data period of this second report starts on the  $12^{th}$  September 2013 to  $25^{th}$  September 2013, for an effective duration of 14 sampling days. Due to mal functioning of the device, non valid PM <sub>2.5</sub> measurements were registered on the Marsaxlokk station except for the  $13^{th}$ ,  $14^{th}$ ,  $15^{th}$  and  $16^{th}$  of September. In Birżebbuġa station and for the same reason, no valid measurements for PM<sub>10</sub> were registered except for the  $13^{th}$  of September.

During this sampling period no exceedances of the daily limit value of 50  $\mu$ g/m<sup>3</sup> for PM10 were measured.

The average  $PM_{2.5}$  concentration was lower in Birżebbuġa when compared to Marsaxlokk. Regarding  $PM_{10}$  there are not enough data in Birżebbuġa to make a relevant comparison.

The results of this monitoring period are given in the next paragraphs, which are first presented in tabular format in the following order:

- 1. Marsaxlokk station: PM<sub>10</sub> & PM<sub>2.5</sub>;
- 2. Birżebbuġa station: PM<sub>10</sub> & PM<sub>2.5</sub>;

Then, a series of significant plot comparisons are reported:

- PM<sub>10</sub> vs PM<sub>2.5</sub> at Marsaxlokk station;
- PM<sub>10</sub> vs PM<sub>2.5</sub> at Birżebbuġa station;
- PM<sub>10</sub> *vs* PM<sub>10</sub>;
- PM<sub>2.5</sub> vs PM<sub>2.5</sub>;



| 2.2.1.             |                         |                                          |                                           |  |  |
|--------------------|-------------------------|------------------------------------------|-------------------------------------------|--|--|
| Day                | Date                    | ΡΜ <sub>10</sub><br>(μg/m <sup>3</sup> ) | ΡΜ <sub>2.5</sub><br>(μg/m <sup>3</sup> ) |  |  |
| Thursday           | 13/09/12                | <i>N.V.</i> <sup>4</sup>                 | N.V.                                      |  |  |
| Friday             | 13/09/13                | 33.70                                    | 14.49                                     |  |  |
| Saturday           | 13/09/14                | 32.78                                    | 12.10                                     |  |  |
| Sunday             | 13/09/15                | 34.44                                    | 17.24                                     |  |  |
| Monday             | 13/09/16                | 32.79                                    | 15.96                                     |  |  |
| Tuesday            | 13/09/17                | 13/09/17 37.00                           |                                           |  |  |
| Wednesday          | 13/09/18                | 35.53                                    | N.V.                                      |  |  |
| Thursday           | 13/09/19                | 35.17                                    | N.V.                                      |  |  |
| Friday             | 13/09/20                | 33.52                                    | N.V.                                      |  |  |
| Saturday           | 13/09/21                | 36.81                                    | N.V.                                      |  |  |
| Sunday             | 13/09/22                | 45.23                                    | N.V.                                      |  |  |
| Monday             | 13/09/23                | 28.94                                    | N.V.                                      |  |  |
| Tuesday            | 13/09/24                | 35.90                                    | N.V.                                      |  |  |
| Wednesday 13/09/25 |                         | 37.34                                    | N.V.                                      |  |  |
| Average duri       | ng reporting period     | 35.32                                    | 14.95                                     |  |  |
| Average during     | calendar year (to date) | 33.06                                    | 13.02                                     |  |  |

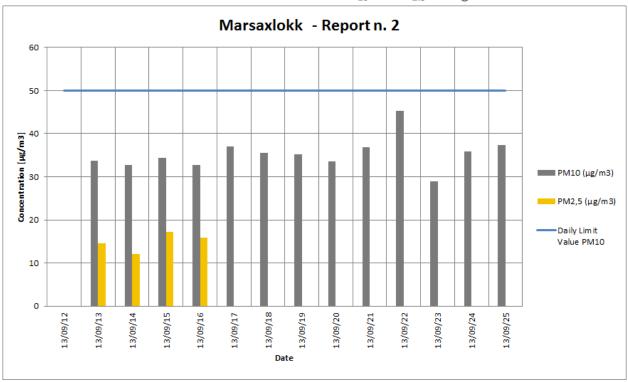
2.2.1. Marsaxlokk - PM<sub>10</sub> and PM<sub>2.5</sub>

Table 4: PM<sub>10</sub> and PM<sub>2.5</sub> data for Marsaxlokk station Report 2

<sup>&</sup>lt;sup>4</sup> Non Valid due to malfunction of the device. Same reason applicable to the rest of the N.V. data in table 4 and 5



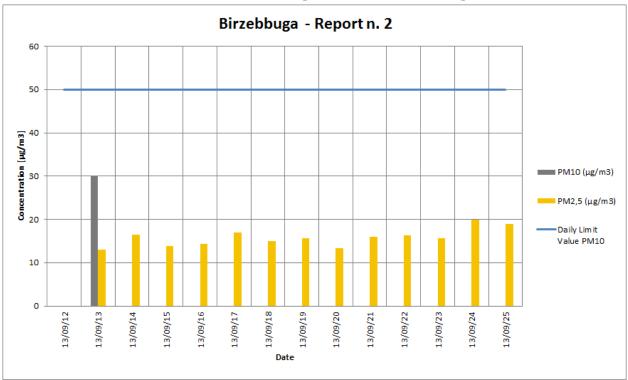
ŧ


ais environmental

| Thursday 13/0<br>Friday 13/0<br>Saturday 13/0 | 9/12<br>9/13<br>9/14<br>9/15<br>9/16 | PM <sub>10</sub><br>(μg/m <sup>3</sup> )<br><i>N.V.</i><br>30.03<br><i>N.V.</i><br><i>N.V.</i> | PM <sub>2.5</sub><br>(μg/m <sup>3</sup> )<br><i>N.V.</i><br>12.99<br>16.47<br>13.91 |
|-----------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Friday 13/0<br>Saturday 13/0                  | 9/13<br>9/14<br>9/15                 | 30.03<br><i>N.V.</i>                                                                           | 12.99<br>16.47                                                                      |
| Saturday 13/0                                 | 9/14<br>9/15                         | N. V.                                                                                          | 16.47                                                                               |
| · · ·                                         | 9/15                                 |                                                                                                |                                                                                     |
| Sunday 13/0                                   |                                      | N.V.                                                                                           | 13.91                                                                               |
|                                               | 9/16                                 |                                                                                                |                                                                                     |
| Monday 13/0                                   | -,                                   | N.V.                                                                                           | 14.28                                                                               |
| Tuesday 13/0                                  | 9/17                                 | N.V.                                                                                           | 17.02                                                                               |
| Wednesday 13/0                                | 13/09/18 N.V                         |                                                                                                | 15.01                                                                               |
| Thursday 13/0                                 | 9/19                                 | N.V.                                                                                           | 15. 74                                                                              |
| Friday 13/0                                   | 13/09/20                             |                                                                                                | 13.36                                                                               |
| Saturday 13/0                                 | 13/09/21                             |                                                                                                | 15.93                                                                               |
| Sunday 13/0                                   | 9/22                                 | N.V.                                                                                           | 16.29                                                                               |
| Monday 13/0                                   | 13/09/23                             |                                                                                                | 15.74                                                                               |
| Tuesday 13/0                                  | 13/09/24                             |                                                                                                | 19.95                                                                               |
| Wednesday 13/09/25                            |                                      | N.V.                                                                                           | 19.03                                                                               |
| Average during reporting                      | Average during reporting period      |                                                                                                |                                                                                     |
| Average during calendar yea                   | 31.97                                | 14.16                                                                                          |                                                                                     |

2.2.2. Birżebbuġa - PM<sub>10</sub> and PM<sub>2.5</sub>

Table 5:  $\text{PM}_{10}$  and  $\text{PM}_{2.5}$  data for Birżebbuġa station Report 2

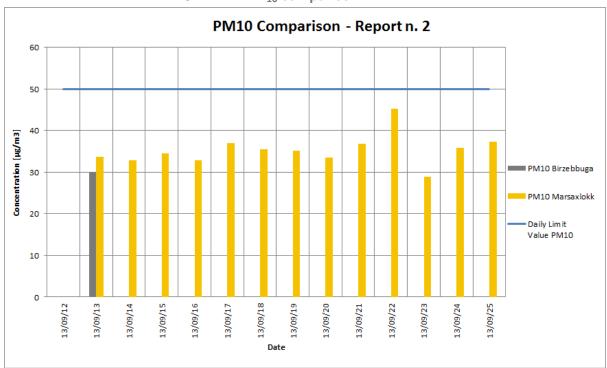





2.2.3. Marsaxlokk – PM<sub>10</sub> vs PM<sub>2.5</sub> histogram

Figure 12: Marsaxlokk - PM<sub>10</sub> vs PM<sub>2.5</sub> histogram plot Report 2






2.2.4. Birżebbuġa – PM<sub>10</sub> vs PM<sub>2.5</sub> histogram

Figure 13: Birżebbuġa - PM<sub>10</sub> vs PM<sub>2.5</sub> histogram plot Report 2



# AIR QUALITY MONITORING AT MARSAXLOKK AND BIRŻEBBUĠA



2.2.5. PM<sub>10</sub> comparison

Figure 14: PM<sub>10</sub> comparison – histogram plot Report 2



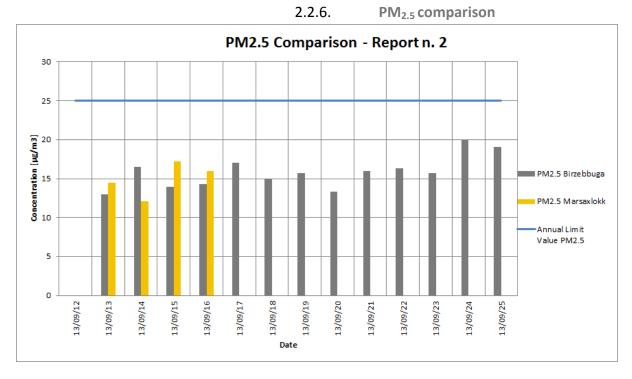



Figure 15: PM<sub>2.5</sub> comparison - histogram plot Report 2



### 2.3. Report 3

The data period of this third report starts on the  $26^{th}$  September to  $2^{nd}$  October 2013, for an effective duration of 7 sampling days. No valid measurements, due to malfunction of the monitoring device, were registered for PM<sub>10</sub> concentrations at the Birżebbuga station.

In Marsaxlokk, two exceedances of the daily limit value of 50  $\mu$ g/m<sup>3</sup> for PM<sub>10</sub> were measured on the 29<sup>th</sup> and 30<sup>th</sup> September.

The average  $PM_{2.5}$  concentration was higher in Birżebbuġa than in Marsaxlokk on the 28<sup>th</sup>, 29<sup>th</sup> September and on the 2<sup>nd</sup> October. On the 30<sup>th</sup> September and 1<sup>st</sup> October, Marsaxlokk  $PM_{2.5}$  concentration was higher. Regarding  $PM_{10}$  there is not data in Birżebbuġa to make a comparison.

The results of this monitoring period are given in the next paragraphs, which are first presented in tabular format in the following order:

- 1. Marsaxlokk station: PM<sub>10</sub> & PM<sub>2.5</sub>;
- 2. Birżebbuġa station: PM<sub>10</sub> & PM<sub>2.5</sub>;

Then, a series of significant plot comparisons are reported:

- PM<sub>10</sub> vs PM<sub>2.5</sub> at Marsaxlokk station;
- PM<sub>10</sub> vs PM<sub>2.5</sub> at Birżebbuġa station;
- PM<sub>2.5</sub> vs PM<sub>2.5</sub>;

Consequently, the Saharan dust contribution is determined and the final adjusted  $PM_{10}$  concentrations are derived.



| 2.5.1.                          |                         | 10 4114 1 112.5                          |                                           |
|---------------------------------|-------------------------|------------------------------------------|-------------------------------------------|
| Day                             | Date                    | PM <sub>10</sub><br>(μg/m <sup>3</sup> ) | ΡΜ <sub>2.5</sub><br>(μg/m <sup>3</sup> ) |
| Thursday                        | 13/09/26                | N.V.                                     | N.V. <sup>5</sup>                         |
| Friday                          | 13/09/27                | 47.44                                    | N.V. <sup>6</sup>                         |
| Saturday                        | 13/09/28                | 40.49                                    | 17.60                                     |
| Sunday                          | 13/09/29                | 53.50                                    | 16.69                                     |
| Monday                          | 13/09/30                | 61.36                                    | 17.61                                     |
| Tuesday                         | 13/10/01                | 44.51                                    | 16.33                                     |
| Wednesday                       | 13/10/02                | 42.67                                    | 14.86                                     |
| Average during reporting period |                         | 48.33                                    | 16.62                                     |
| Average during                  | calendar year (to date) | 36.73                                    | 14.52                                     |

2.3.1. Marsaxlokk - PM<sub>10</sub> and PM<sub>2.5</sub>

Table 6:  $PM_{10}$  and  $PM_{2.5}$  data for Marsaxlokk station Report 3

<sup>6</sup> Non Valid due to power interruption



<sup>&</sup>lt;sup>5</sup> Filters Damaged

| 2.3.2.         | Dirzebbuga - Fiv        | 10 4114 1 112.5                          |                                           |
|----------------|-------------------------|------------------------------------------|-------------------------------------------|
| Day            | Date                    | PM <sub>10</sub><br>(μg/m <sup>3</sup> ) | ΡΜ <sub>2.5</sub><br>(μg/m <sup>3</sup> ) |
| Thursday       | 13/09/26                | N.V. <sup>7</sup>                        | N.V.                                      |
| Friday         | 13/09/27                | N.V.                                     | N.V.                                      |
| Saturday       | 13/09/28                | N.V. <sup>8</sup>                        | 17.77                                     |
| Sunday         | 13/09/29                | N.V.                                     | 20.88                                     |
| Monday         | 13/09/30                | N.V.                                     | 15.57                                     |
| Tuesday        | 13/10/01                | N.V.                                     | 10.26                                     |
| Wednesday      | 13/10/02                | N.V.                                     | 15.20                                     |
| Average dur    | ing reporting period    |                                          | 15.94                                     |
| Average during | calendar year (to date) | 31.97                                    | 14.50                                     |

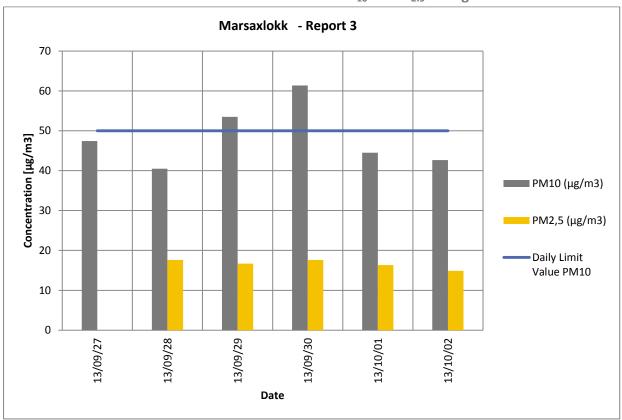
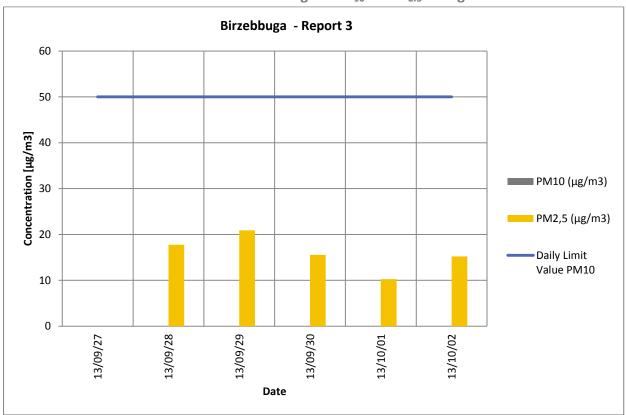

2.3.2. Birżebbuġa - PM<sub>10</sub> and PM<sub>2.5</sub>

Table 7:  $\text{PM}_{10}$  and  $\text{PM}_{2.5}$  data for Birżebbuġa station Report 3

<sup>&</sup>lt;sup>8</sup> *Non Valid* because of the malfunction of the monitoring device. Same reason applicable to the rest of N.V. data for PM<sub>10</sub> concentration in *Birżebbuġa* station.




<sup>&</sup>lt;sup>7</sup> Filters Damaged



2.3.3. Marsaxlokk – PM<sub>10</sub> vs PM<sub>2.5</sub> histogram

Figure 16: Marsaxlokk - PM<sub>10</sub> vs PM<sub>2.5</sub> histogram plot Report 3





2.3.4. Birżebbuġa – PM<sub>10</sub> vs PM<sub>2.5</sub> histogram

Figure 17: Birżebbuża -  $PM_{10}$  vs  $PM_{2.5}$  histogram plot Report 3



# AIR QUALITY MONITORING AT MARSAXLOKK AND BIRŻEBBUĠA

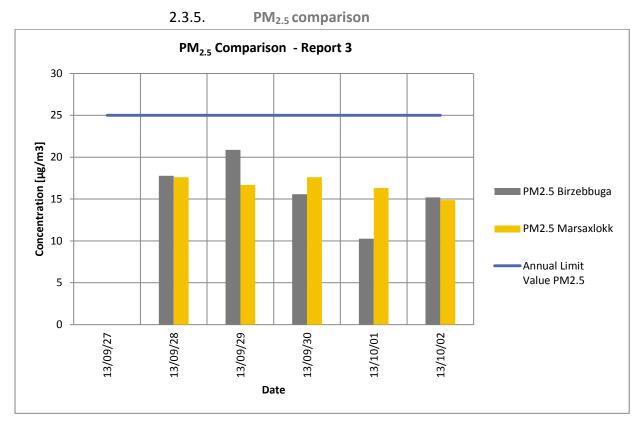



Figure 18: PM<sub>2.5</sub> comparison - histogram plot Report 3

An analysis of the  $PM_{10}$ -exceedance at Marsaxlokk on the  $29^{th}$  and  $30^{th}$  of September is included in Annex A. After applying mathemathical modelling tools and observing satelitte images, it was concluded that a Saharan dust episode took place in those dates .



### 2.4. Report 4

The data period of this report is between the  $3^{rd}$  October 2013 and the  $16^{th}$  October 2013 for an effective duration of 14 sampling days. Non-valid measurements, due to malfunction of the monitoring device, were registered for PM<sub>10</sub> concentrations at the Birżebbuġa station. In addition, due to power interruption, non-valid measurements were recorded at the Marsaxlokk station from the  $11^{th}$  till the  $16^{th}$  for PM<sub>2.5</sub> and on the  $11^{th}$   $12^{th}$  and  $15^{th}$  for PM<sub>10</sub>.

In Marsaxlokk, two exceedances of the daily limit value of 50  $\mu$ g/m<sup>3</sup> for PM<sub>10</sub> were measured on the 10<sup>th</sup> and 16<sup>th</sup> of October.

The average PM<sub>2.5</sub> concentration was higher in Marsaxlokk than in Birżebbuġa.

Regarding  $PM_{10}$  there is no data in Birżebbuġa to make a comparison.

The results of this monitoring period are given in the next paragraphs, which are first presented in tabular format in the following order:

- 1. Marsaxlokk station: PM<sub>10</sub> & PM<sub>2.5</sub>;
- 2. Birżebbuġa station: PM<sub>10</sub> & PM<sub>2.5</sub>;

Then, a series of significant plot comparisons are reported:

- PM<sub>10</sub> vs PM<sub>2.5</sub> at Marsaxlokk station;
- PM<sub>10</sub> vs PM<sub>2.5</sub> at Birżebbuġa station;
- PM<sub>2.5</sub> vs PM<sub>2.5</sub>;



| 2.4.1.           | Z.4.1. IVIAISAXIOKK - PI |                                          |                                           |  |  |  |
|------------------|--------------------------|------------------------------------------|-------------------------------------------|--|--|--|
| Day              | Date                     | ΡΜ <sub>10</sub><br>(μg/m <sup>3</sup> ) | ΡΜ <sub>2.5</sub><br>(µg/m <sup>3</sup> ) |  |  |  |
| Thursday         | 13/10/03                 | 33.15                                    | 12.28                                     |  |  |  |
| Friday           | 13/10/04                 | 25.63                                    | 13.75                                     |  |  |  |
| Saturday         | 13/10/05                 | 18.13                                    | 8.98                                      |  |  |  |
| Sunday           | 13/10/06                 | 21.43                                    | 9.72                                      |  |  |  |
| Monday           | 13/10/07                 | 34.61                                    | 13.39                                     |  |  |  |
| Tuesday          | 13/10/08                 | 25.63                                    | 11.92                                     |  |  |  |
| Wednesday        | 13/10/09                 | 27.29                                    | 11.56                                     |  |  |  |
| Thursday         | 13/10/10                 | 56.58                                    | 12.93                                     |  |  |  |
| Friday           | 13/10/11                 | N.V. <sup>9</sup>                        | N.V. <sup>10</sup>                        |  |  |  |
| Saturday         | 13/10/12                 | N.V.                                     | N.V.                                      |  |  |  |
| Sunday           | 13/10/13                 | 42.84                                    | N.V.                                      |  |  |  |
| Monday           | 13/10/14                 | 38.09                                    | N.V.                                      |  |  |  |
| Tuesday          | 13/10/15                 | N.V.                                     | N.V.                                      |  |  |  |
| Wednesday        | 13/10/16                 | 52.38                                    | N.V.                                      |  |  |  |
| Average duri     | ng reporting period      | 34.16                                    | 11.82                                     |  |  |  |
| Average during o | alendar year (to date)   | 35.94                                    | 13.44                                     |  |  |  |

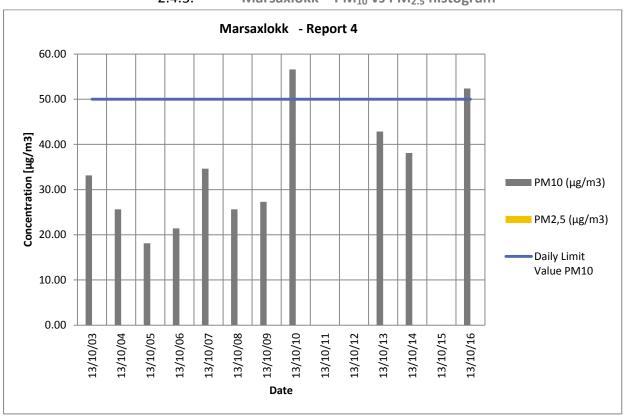
2.4.1. Marsaxlokk - PM<sub>10</sub> and PM<sub>2.5</sub>

Table 8: PM<sub>10</sub> and PM<sub>2.5</sub> data for Marsaxlokk station – Report 4

<sup>&</sup>lt;sup>10</sup> Non valid data due to the malfunction of the device. The same reason applicable to the rest of Non Valid data for the PM 2.5.



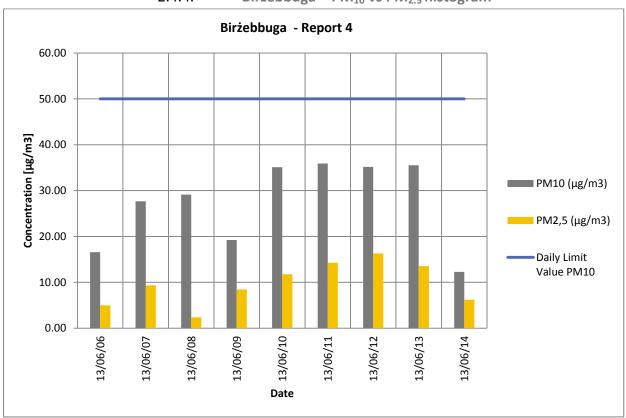
 $<sup>^9</sup>$  Non Valid data due to power interruption. Same reason applies on the  $12^{th}$  and  $15^{th}$  of October.


| 2.4.2.            | Birzebbuga - Pivi      |                                          |                                           |  |  |
|-------------------|------------------------|------------------------------------------|-------------------------------------------|--|--|
| Day               | Date                   | ΡΜ <sub>10</sub><br>(μg/m <sup>3</sup> ) | ΡΜ <sub>2.5</sub><br>(μg/m <sup>3</sup> ) |  |  |
| Thursday          | 13/10/03               | N.V. <sup>11</sup>                       | N.V.                                      |  |  |
| Friday            | 13/10/04               | N.V.                                     | 11.35                                     |  |  |
| Saturday          | 13/10/05               | N.V.                                     | 11.72                                     |  |  |
| Sunday            | 13/10/06               | N.V.                                     | 7.87                                      |  |  |
| Monday            | 13/10/07               | N.V.                                     | 2.01                                      |  |  |
| Tuesday 13/10/08  |                        | N.V.                                     | 8.07                                      |  |  |
| Wednesday         | 13/10/09               | N.V.                                     | 8.61                                      |  |  |
| Thursday          | 13/10/10               | N.V.                                     | 9.89                                      |  |  |
| Friday            | 13/10/11               | N.V.                                     | 16.73                                     |  |  |
| Saturday          | 13/10/12               | N.V.                                     | 12.45                                     |  |  |
| Sunday            | 13/10/13               | N.V.                                     | 8.87                                      |  |  |
| Monday            | 13/10/14               | N.V.                                     | 1.83                                      |  |  |
| Tuesday           | 13/10/15               | N.V.                                     | 13.76                                     |  |  |
| Wednesday         | 13/10/16               | N.V.                                     | 14.46                                     |  |  |
| Average durin     | g reporting period     |                                          | 9.82                                      |  |  |
| Average during ca | alendar year (to date) | 31.97                                    | 12.94                                     |  |  |

2.4.2. Birżebbuġa - PM<sub>10</sub> and PM<sub>2.5</sub>

Table 9: PM<sub>10</sub> and PM<sub>2.5</sub> data for Birżebbuġa station – Report 4

<sup>&</sup>lt;sup>11</sup> Non Valid due to the malfunction of the device. The same reason applicable to the rest of *Non Valid* data in this table.






2.4.3. Marsaxlokk – PM<sub>10</sub> vs PM<sub>2.5</sub> histogram







2.4.4. Birżebbuġa – PM<sub>10</sub> vs PM<sub>2.5</sub> histogram

Figure 20: Birżebbuga - PM<sub>10</sub> vs PM<sub>2.5</sub> histogram plot – Report 4



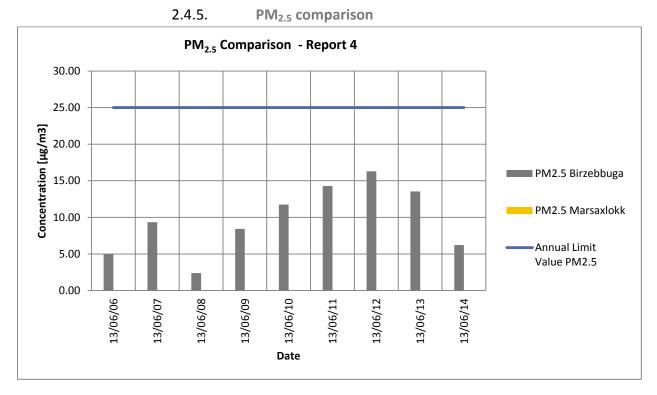



Figure 21: PM<sub>2.5</sub> comparison - histogram plot – Report 4

An analysis of the  $PM_{10}$ -exceedance at Marsaxlokk on the  $10^{th}$  and  $16^{th}$  of October is included in Annex A. After applying mathemathical modelling tools and observing satelitte images, it was concluded that, on the  $10^{th}$  the  $PM_{10}$  excedeence could be attributed to a dust loading episode, while on the  $16^{th}$  due to anthropogenic activities.



## 2.5. Report 5

The data period of this report is between the  $17^{th}$  and the  $30^{th}$  October 2013 for an effective duration of 14 sampling days. Non-valid measurements, due to malfunction of the monitoring device, were registered for PM<sub>2.5</sub> concentrations at the Marsaxlokk station. In addition, due to power interruption, non - valid measurements were recorded at the Birżebbuġa station on the  $17^{th}$  and  $21^{st}$  for PM<sub>10</sub> as well as on the  $17^{th}$  and  $21^{st}$  for PM<sub>2.5</sub>.

The results of this monitoring period are given in the next paragraphs, which are first presented in tabular format in the following order:

- 1. Marsaxlokk station: PM<sub>10</sub> & PM<sub>2.5</sub>;
- 2. Birżebbuġa station: PM<sub>10</sub> & PM<sub>2.5</sub>;

Then, a series of significant plot comparisons are reported:

- PM<sub>10</sub> vs PM<sub>2.5</sub> at Marsaxlokk station;
- PM<sub>10</sub> vs PM<sub>2.5</sub> at Birżebbuġa station;
- PM<sub>10</sub> vs PM<sub>10</sub>;
- PM<sub>2.5</sub> vs PM<sub>2.5</sub>.



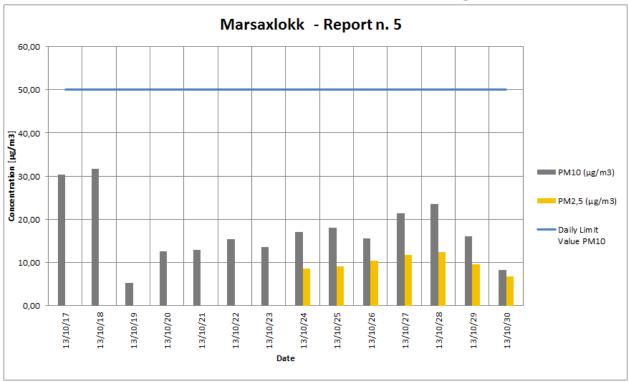
| 2.5.1. IVIArSAXIOKK - $PIVI_{10}$ and $PIVI_{2.5}$ |                       |                                          |                              |  |  |
|----------------------------------------------------|-----------------------|------------------------------------------|------------------------------|--|--|
| Day                                                | Date                  | ΡΜ <sub>10</sub><br>(μg/m <sup>3</sup> ) | ΡΜ <sub>2.5</sub><br>(μg/m³) |  |  |
| Thursday                                           | 13/10/17              | 30.29                                    | N.V. <sup>12</sup>           |  |  |
| Friday                                             | 13/10/18              | 31.68                                    | N.V.                         |  |  |
| Saturday                                           | 13/10/19              | 5.31                                     | N.V.                         |  |  |
| Sunday                                             | 13/10/20              | 12.63                                    | N.V.                         |  |  |
| Monday                                             | 13/10/21              | 12.94                                    | N.V.                         |  |  |
| Tuesday                                            | 13/10/22              | 15.38                                    | N.V.                         |  |  |
| Wednesday                                          | 13/10/23              | 13.55                                    | N.V.                         |  |  |
| Thursday                                           | 13/10/24              | 17.03                                    | 8.61                         |  |  |
| Friday                                             | 13/10/25              | 18.13                                    | 9.16                         |  |  |
| Saturday                                           | 13/10/26              | 15.56                                    | 10.45                        |  |  |
| Sunday                                             | 13/10/27              | 21.42                                    | 11.73                        |  |  |
| Monday                                             | 13/10/28              | 23.62                                    | 12.47                        |  |  |
| Tuesday                                            | 13/10/29              | 16.11                                    | 9.53                         |  |  |
| Wednesday                                          | 13/10/30              | 8.24                                     | 6.78                         |  |  |
| Average during                                     | reporting period      | 17.28                                    | 9.82                         |  |  |
| Average during ca                                  | lendar year (to date) | 30.72                                    | 12.50                        |  |  |

2.5.1. Marsaxlokk - PM<sub>10</sub> and PM<sub>2.5</sub>

Table 10: PM<sub>10</sub> and PM<sub>2.5</sub> data for Marsaxlokk station – Report 5

<sup>&</sup>lt;sup>12</sup> Non Valid data due to the malfunction of the device. The same reason applicable to the rest of Non Valid data for PM<sub>2.5</sub>

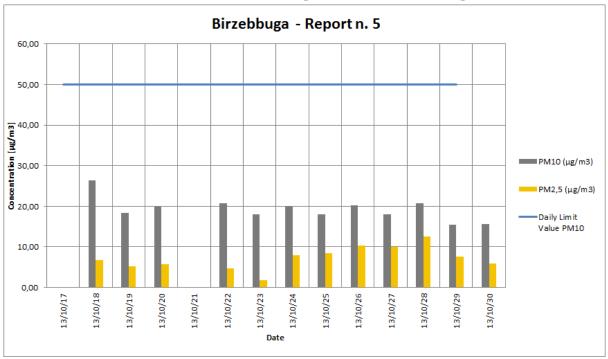



|                   |                        | PM <sub>10</sub>   | PM <sub>2.5</sub> |  |
|-------------------|------------------------|--------------------|-------------------|--|
| Day               | Date                   | (µg/m³)            | (µg/m³)           |  |
| Thursday          | 13/10/17               | N.V. <sup>13</sup> | N.V.              |  |
| Friday            | 13/10/18               | 26.40              | 6.79              |  |
| Saturday          | 13/10/19               | 18.30              | 5.13              |  |
| Sunday            | 13/10/20               | 19.96              | 5.68              |  |
| Monday            | 13/10/21               | N.V                | N.V               |  |
| Tuesday           | 13/10/22               | 20.78              | 4.71              |  |
| Wednesday         | 13/10/23               | 17.94              | 1.83              |  |
| Thursday          | 13/10/24               | 20.05              | 7.91              |  |
| Friday            | 13/10/25               | 17.95              | 8.43              |  |
| Saturday          | 13/10/26               | 20.22              | 10.30             |  |
| Sunday            | 13/10/27               | 17.96              | 9.90              |  |
| Monday            | 13/10/28               | 20.72              | 12.47             |  |
| Tuesday           | 13/10/29               | 15.38              | 7.51              |  |
| Wednesday         | 13/10/30               | 15.56              | 5.86              |  |
| Average duri      | ng reporting period    | 19.27              | 7.21              |  |
| Average during ca | alendar year (to date) | 24.71              | 11.59             |  |

2.5.2. Birżebbuġa - PM<sub>10</sub> and PM<sub>2.5</sub>

Table 11: PM<sub>10</sub> and PM<sub>2.5</sub> data for Birżebbuġa station – Report 5

 $^{13}$  Non Valid due to power interruption. Same reason applies on the  $21^{\rm st}$  of October






2.5.3. Marsaxlokk – PM<sub>10</sub> vs PM<sub>2.5</sub> histogram

Figure 22: Marsaxlokk - PM<sub>10</sub> vs PM<sub>2.5</sub> histogram plot – Report 5





2.5.4. Birżebbuġa – PM<sub>10</sub> vs PM<sub>2.5</sub> histogram

Figure 23: Birżebbuġa - PM<sub>10</sub> vs PM<sub>2.5</sub> histogram plot – Report 5



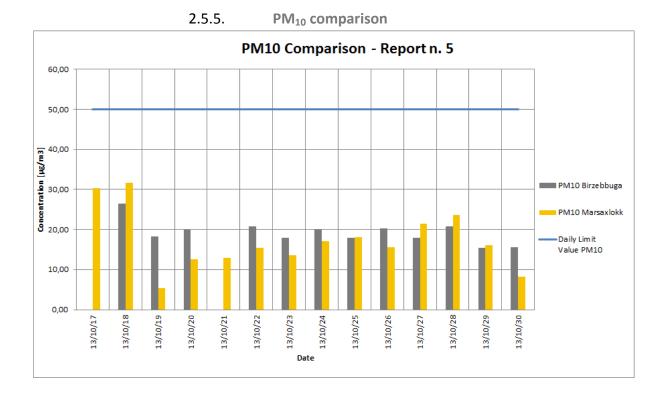



Figure 24: PM<sub>10</sub> comparison - histogram plot – Report 5



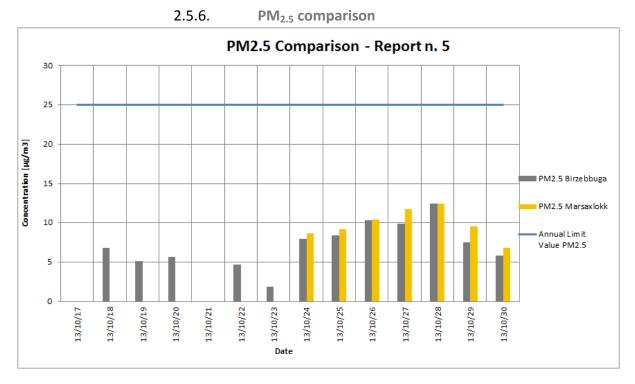



Figure 25: PM<sub>2.5</sub> comparison - histogram plot – Report5



# 2.6. Report 6

The data period of this report is between the  $31^{st}$  October and the  $13^{th}$  November 2013 for an effective duration of 14 sampling days. Non-valid measurements, due to power interruption, were registered for PM<sub>10</sub> and PM<sub>2.5</sub> concentrations at the Birżebbuġa station on the  $31^{st}$  October and the  $1^{st}$  November. No exceedance was registered in this monitoring period.

The results of this monitoring period are given in the next paragraphs, which are first presented in tabular format in the following order:

- 1. Marsaxlokk station: PM<sub>10</sub> & PM<sub>2.5</sub>;
- 2. Birżebbuġa station: PM<sub>10</sub> & PM<sub>2.5</sub>;

Then, a series of significant plot comparisons are reported:

- PM<sub>10</sub> vs PM<sub>2.5</sub> at Marsaxlokk station;
- PM<sub>10</sub> vs PM<sub>2.5</sub> at Birżebbuġa station;
- PM<sub>10</sub> vs PM<sub>10</sub>;
- PM<sub>2,5</sub> vs PM<sub>2.5</sub>.



| Dava                                   | Data     | PM <sub>10</sub> | PM <sub>2.5</sub> |  |
|----------------------------------------|----------|------------------|-------------------|--|
| Day                                    | Date     | (µg/m³)          | (µg/m³)           |  |
| Thursday                               | 13/10/31 | 13.59            | 2.95              |  |
| Friday                                 | 13/11/01 | 15.75            | 4.40              |  |
| Saturday                               | 13/11/02 | 20.14            | 11.36             |  |
| Sunday                                 | 13/11/03 | 18.31            | 2.20              |  |
| Monday                                 | 13/11/04 | 18.49            | 2.75              |  |
| Tuesday                                | 13/11/05 | 32.59            | <1.83             |  |
| Wednesday                              | 13/11/06 | 32.65 <1.        |                   |  |
| Thursday                               | 13/11/07 | 31.30 4.         |                   |  |
| Friday                                 | 13/11/08 | 30.39            | <1.83             |  |
| Saturday                               | 13/11/09 | 23.62 2.         |                   |  |
| Sunday 13/11/10                        |          | 26.91            | 2.75              |  |
| Monday                                 | 13/11/11 | 29.65            | <1.83             |  |
| Tuesday                                | 13/11/12 | 13.18 <1         |                   |  |
| Wednesday                              | 13/11/13 | 9.89             | 2.38              |  |
| Average during reporting period        |          | 22.60            | 3.22              |  |
| Average during calendar year (to date) |          | 28.94            | 9.57              |  |

2.6.1. Marsaxlokk - PM<sub>10</sub> and PM<sub>2.5</sub>

Table 12: PM<sub>10</sub> and PM<sub>2.5</sub> data for Marsaxlokk station – Report 6



| 2.6.2.             | Dirzebbuga - Piv        | Birzebbuga - $PIVI_{10}$ and $PIVI_{2.5}$ |                                           |  |  |
|--------------------|-------------------------|-------------------------------------------|-------------------------------------------|--|--|
| Day                | Date                    | ΡΜ <sub>10</sub><br>(μg/m <sup>3</sup> )  | ΡΜ <sub>2.5</sub><br>(µg/m <sup>3</sup> ) |  |  |
| Thursday           | 13/10/31                | N.V. <sub>14</sub>                        | N.V.                                      |  |  |
| Friday             | 13/11/01                | N.V.                                      | N.V.                                      |  |  |
| Saturday           | 13/11/02                | 38.08                                     | 15.55                                     |  |  |
| Sunday             | 13/11/03                | 10.07                                     | <1.83                                     |  |  |
| Monday             | 13/11/04                | 22.00                                     | <1.83                                     |  |  |
| Tuesday            | Tuesday 13/11/05 14.    |                                           | <1.83                                     |  |  |
| Wednesday          | 13/11/06                | 17.24                                     | <1.83                                     |  |  |
| Thursday           | 13/11/07                | 3.11                                      | <1.83                                     |  |  |
| Friday             | 13/11/08                | 13.08                                     | <1.83                                     |  |  |
| Saturday           | 13/11/09                | 8.97                                      | <1.83                                     |  |  |
| Sunday             | 13/11/10                | 12.09                                     | <1.83                                     |  |  |
| Monday             | 13/11/11                | 6.77                                      | <1.83                                     |  |  |
| Tuesday            | 13/11/12                | 7.69                                      | <1.83                                     |  |  |
| Wednesday 13/11/13 |                         | 6.41                                      | <1.83                                     |  |  |
| Average during     | reporting period        | 13.35                                     | 2.98                                      |  |  |
|                    | calendar year (to date) | 20.58                                     | 9.95                                      |  |  |

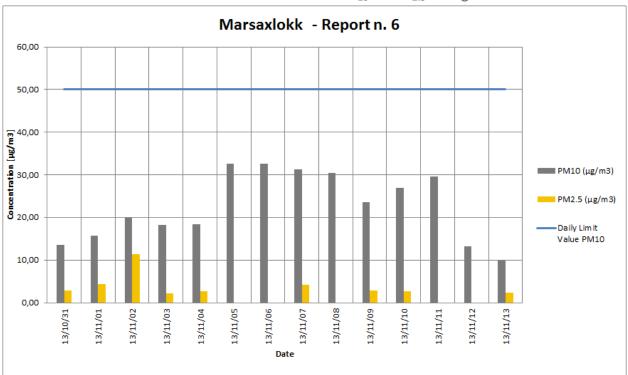
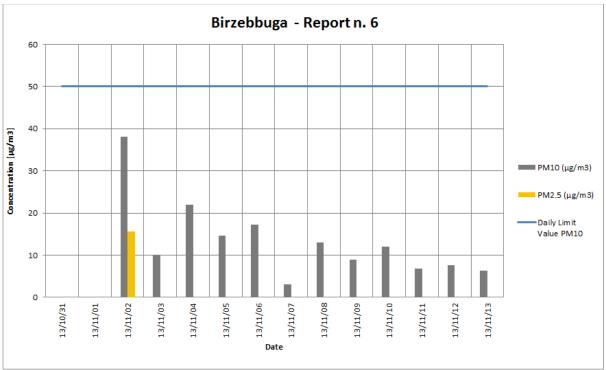

2.6.2 Birżebbuga - PM10 and PM2 F

Table 13: PM<sub>10</sub> and PM<sub>2.5</sub> data for Birżebbuġa station – Report 6

<sup>14</sup> Non Valid data due to power interruption. The same reason applicable to the rest of Non valid data in this table.

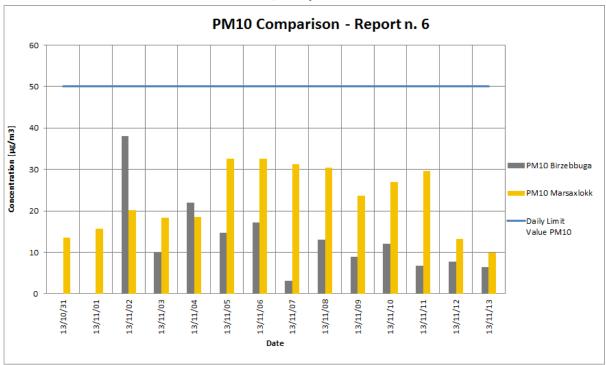



ŧ



2.6.3. Marsaxlokk – PM<sub>10</sub> vs PM<sub>2.5</sub> histogram

Figure 26: Marsaxlokk - PM<sub>10</sub>vsPM<sub>2.5</sub> histogram plot – Report 6






2.6.4. Birżebbuġa – PM<sub>10</sub> vs PM<sub>2.5</sub> histogram

Figure 27: Birżebbuġa - PM<sub>10</sub>vsPM<sub>2.5</sub> histogram plot – Report 6





2.6.5. PM<sub>10</sub> comparison

Figure 28: PM<sub>10</sub> comparison - histogram plot – Report 6



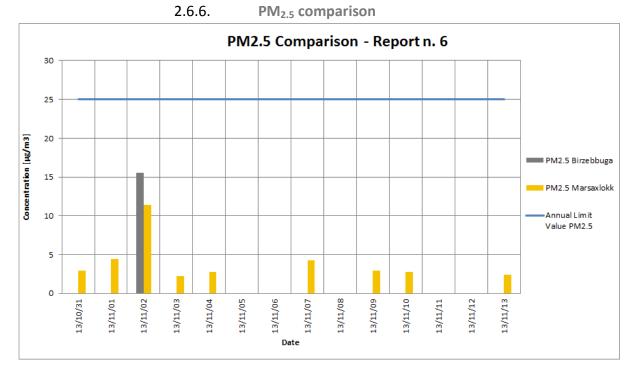



Figure 29: PM<sub>2.5</sub> comparison - histogram plot – Report6



### 2.7. Metal Analysis

Metal analysis followed the procedures described in earlier sections. The limit values for Arsenic, Cadmium, Nickel and Lead listed in the table below are annual limit values according to the L.N. 478/2010. Therefore the interpretation of the results achieved from the analysis of metals will be drawn up following the completion of the monitoring program which spans over one calendar year.

| 2.7.1.                   | October | 2013 |
|--------------------------|---------|------|
| <b>-</b> .,,. <u>+</u> . | 000000  |      |

| 2.7.1.1. Marsaxlokk Metals |          |         |         |        |       |          |
|----------------------------|----------|---------|---------|--------|-------|----------|
| Day L                      | Date     | Arsenic | Cadmium | Nickel | Lead  | Vanadium |
| Duy                        | Dute     | ng/mc   | ng/mc   | ng/mc  | ng/mc | ng/mc    |
| Wednesday                  | 13/10/02 | <1.83   | <1.83   | 7.33   | 25.64 | 9.16     |
| Thursday                   | 13/10/03 | 1.83    | 1.83    | 3.66   | 31.13 | 7.33     |
| Friday                     | 13/10/04 | 1.83    | 1.83    | 3.66   | 9.16  | 3.66     |
| Saturday                   | 13/10/05 | 1.83    | 1.83    | 1.83   | 5.49  | 1.83     |
| Sunday                     | 13/10/06 | 1.83    | 1.83    | 1.83   | 5.49  | 3.66     |
| Monday                     | 13/10/07 | 1.83    | 1.83    | 3.66   | 7.33  | 7.33     |
| Tuesday                    | 13/10/08 | 1.83    | 1.83    | 5.49   | 25.63 | 3.66     |
| Wednesday                  | 13/10/09 | 1.83    | 1.83    | 7.33   | 25.64 | 12.82    |
| Thursday                   | 13/10/10 | 1.83    | 1.83    | 7.32   | 18.31 | 9.15     |
| Friday                     | 13/10/11 |         |         |        |       |          |
| Saturday                   | 13/10/12 |         |         |        |       |          |
| Sunday                     | 13/10/13 | 1.83    | 1.83    | 3.66   | 12.82 | 7.33     |
| Monday                     | 13/10/14 | <1.83   | <1.83   | 1.83   | 1.83  | 3.66     |
| Tuesday                    | 13/10/15 |         |         |        |       |          |
| Wednesday                  | 13/10/16 | 1.83    | 1.83    | 3.66   | 31.13 | 7.33     |
| Thursday                   | 13/10/17 | <1.83   | <1.83   | 1.84   | 3.67  | 3.67     |
| Friday                     | 13/10/18 | <1.83   | <1.83   | 3.67   | 9.18  | 5.51     |
| Saturday                   | 13/10/19 | <1.83   | <1.83   | 3.67   | 5.51  | 3.67     |
| Sunday                     | 13/10/20 | <1.83   | <1.83   | 7.34   | 1.84  | 1.84     |
| Monday                     | 13/10/21 | <1.83   | <1.83   | 3.67   | 3.67  | 1.84     |
| Tuesday                    | 13/10/22 | <1.83   | <1.83   | 1.84   | 9.18  | 1.84     |
| Wednesday                  | 13/10/23 | <1.83   | <1.83   | 3.67   | 3.67  | 1.84     |
| Thursday                   | 13/10/24 | <1.83   | <1.83   | 5.51   | 7.34  | 3.67     |
| Friday                     | 13/10/25 | <1.83   | <1.83   | 9.18   | 7.34  | 5.51     |
| Saturday                   | 13/10/26 | <1.83   | <1.83   | 5.51   | 14.69 | 5.51     |
| Sunday                     | 13/10/27 | <1.83   | <1.83   | 5.51   | 16.52 | 7.34     |
| Monday                     | 13/10/28 | <1.83   | <1.83   | 9.18   | 11.02 | 5.51     |
| Tuesday                    | 13/10/29 | <1.83   | <1.83   | 5.51   | 11.02 | 1.84     |
| Wednesday                  | 13/10/30 | <1.83   | <1.83   | 7.34   | 20.20 | 5.51     |
| Thursday                   | 13/10/31 | <1.83   | <1.83   | 1.84   | 3.67  | 5.51     |

#### 2.7.1.1. Marsaxlokk Metals

Table 14. Metals data for Marsaxlokk station – October



| 0         | Date     | Arsenic | Cadmium | Nickel | Lead  | Vanadium |
|-----------|----------|---------|---------|--------|-------|----------|
| Day       |          | ng/mc   | ng/mc   | ng/mc  | ng/mc | ng/mc    |
| Tuesday   | 13/10/01 |         |         |        |       |          |
| Wednesday | 13/10/02 |         |         |        |       |          |
| Thursday  | 13/10/03 |         |         |        |       |          |
| Friday    | 13/10/04 |         |         |        |       |          |
| Saturday  | 13/10/05 |         |         |        |       |          |
| Sunday    | 13/10/06 |         |         |        |       |          |
| Monday    | 13/10/07 |         |         |        |       |          |
| Tuesday   | 13/10/08 |         |         |        |       |          |
| Wednesday | 13/10/09 |         |         |        |       |          |
| Thursday  | 13/10/10 |         |         |        |       |          |
| Friday    | 13/10/11 |         |         |        |       |          |
| Saturday  | 13/10/12 |         |         |        |       |          |
| Sunday    | 13/10/13 |         |         |        |       |          |
| Monday    | 13/10/14 |         |         |        |       |          |
| Tuesday   | 13/10/15 |         |         |        |       |          |
| Wednesday | 13/10/16 |         |         |        |       |          |
| Thursday  | 13/10/17 |         |         |        |       |          |
| Friday    | 13/10/18 | 1.83    | <1.83   | 11.00  | 20.17 | 7.33     |
| Saturday  | 13/10/19 | 1.83    | <1.83   | 3.67   | 7.33  | 7.33     |
| Sunday    | 13/10/20 | 1.83    | <1.83   | 3.67   | 1.83  | 7.33     |
| Monday    | 13/10/21 |         |         |        |       |          |
| Tuesday   | 13/10/22 | 1.83    | <1.83   | 3.67   | 20.17 | 5.50     |
| Wednesday | 13/10/23 | <1.83   | <1.83   | 1.83   | 1.83  | 3.67     |
| Thursday  | 13/10/24 | 1.83    | <1.83   | 3.67   | 9.17  | 5.50     |
| Friday    | 13/10/25 | 1.83    | <1.83   | 1.83   | 11.00 | 1.83     |
| Saturday  | 13/10/26 | 1.83    | <1.83   | 9.17   | 16.50 | 11.00    |
| Sunday    | 13/10/27 | 1.83    | <1.83   | 9.17   | 16.50 | 11.00    |
| Monday    | 13/10/28 | <1.83   | <1.83   | 1.83   | 7.33  | 5.50     |
| Tuesday   | 13/10/29 | 1.83    | <1.83   | 1.83   | 11.00 | 3.67     |
| Wednesday | 13/10/30 | 1.83    | <1.83   | 7.33   | 9.17  | 20.17    |
| Thursday  | 13/10/31 | 1.83    | <1.83   | 3.67   | 20.17 | 5.50     |

2.7.1.2. Birżebbuġa Metals

Table 15. Metals data for Birżebbuġa station – October



## 2.8. Report 7

The data period of this report is between the 14<sup>th</sup> and the 27<sup>th</sup> November 2013 for an effective duration of 14 sampling days.

The results of this monitoring period are given in the next paragraphs, which are first presented in tabular format in the following order:

- 1. Marsaxlokk station: PM<sub>10</sub> & PM<sub>2.5</sub>;
- 2. Birżebbuġa station: PM<sub>10</sub> & PM<sub>2.5</sub>;

Then, a series of significant plot comparisons are reported:

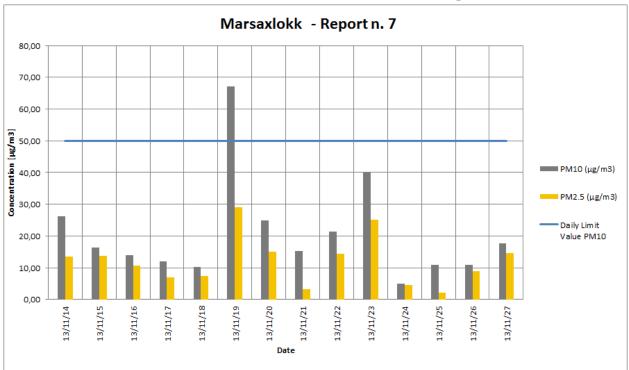
- PM<sub>10</sub> vs PM<sub>2.5</sub> at Marsaxlokk station;
- PM<sub>10</sub> vs PM<sub>2.5</sub> at Birżebbuġa station;
- PM<sub>10</sub> vs PM<sub>10</sub>;
- PM<sub>2.5</sub> vs PM<sub>2.5</sub>.



| 2.0.1         |                           | PM <sub>10</sub> | PM <sub>2.5</sub> |
|---------------|---------------------------|------------------|-------------------|
| Day           | Date                      | (µg/m³)          | (µg/m³)           |
| Thursday      | 13/11/14                  | 26.17            | 13.59             |
| Friday        | 13/11/15                  | 16.29            | 13.75             |
| Saturday      | 13/11/16                  | 13.91            | 10.64             |
| Sunday        | 13/11/17                  | 12.09            | 6.97              |
| Monday        | 13/11/18                  | 10.25            | 7.34              |
| Tuesday       | 13/11/19                  | 67.20            | 28.98             |
| Wednesday     | 13/11/20                  | 24.90            | 15.03             |
| Thursday      | 13/11/21                  | 15.19            | 3.30              |
| Friday        | 13/11/22                  | 21.42            | 14.48             |
| Saturday      | 13/11/23                  | 40.09            | 25.10             |
| Sunday        | 13/11/24                  | 4.95             | 4.58              |
| Monday        | 13/11/25                  | 10.99            | 2.20              |
| Tuesday       | 13/11/26                  | 10.80            | 8.98              |
| Wednesday     | 13/11/27                  | 17.58            | 14.65             |
| Average durin | g reporting period        | 20.85            | 12.12             |
| Average durin | g calendar year (to date) | 27.49            | 10.04             |

2.8.1. Marsaxlokk - PM<sub>10</sub> and PM<sub>2.5</sub>

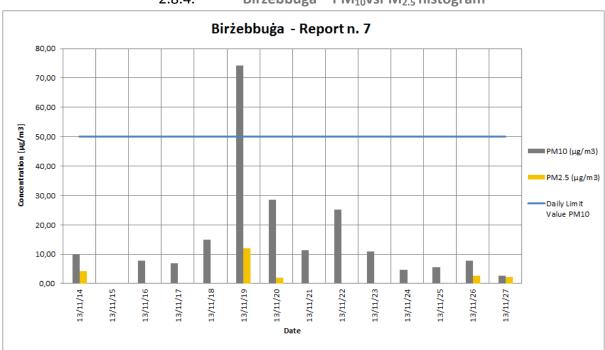
Table 16:  $PM_{10}$  and  $PM_{2.5}$  data for Marsaxlokk station – Report 7




| 2.8.2.                      | Birżebbuġa - PM <sub>10</sub> and PM <sub>2.5</sub> |                  | VI <sub>2.5</sub> |
|-----------------------------|-----------------------------------------------------|------------------|-------------------|
|                             | D. I.                                               | PM <sub>10</sub> | PM <sub>2.5</sub> |
| Day                         | Date                                                | (µg/m³)          | (µg/m³)           |
| Thursday                    | 13/11/14                                            | 10.12            | 4.22              |
| Friday                      | 13/11/15                                            | <1.83            | <1.83             |
| Saturday                    | 13/11/16                                            | 7.87             | <1.83             |
| Sunday                      | 13/11/17                                            | 6.95             | <1.83             |
| Monday                      | 13/11/18                                            | 15.01            | <1.83             |
| Tuesday                     | 13/11/19                                            | 74.12            | 12.08             |
| Wednesday                   | 13/11/20                                            | 28.55            | 2.01              |
| Thursday                    | 13/11/21                                            | 11.35            | <1.83             |
| Friday                      | 13/11/22                                            | 25.07            | <1.83             |
| Saturday                    | 13/11/23                                            | 10.98            | <1.83             |
| Sunday                      | 13/11/24                                            | 4.76             | <1.83             |
| Monday                      | 13/11/25                                            | 5.49             | <1.83             |
| Tuesday                     | 13/11/26                                            | 7.87             | 2.56              |
| Wednesday                   | 13/11/27                                            | 2.75             | 2.20              |
| Average durin period        | ng reporting                                        | 15.20            | 2.83              |
| Average during<br>(to date) | calendar year                                       | 18.97            | 8.65              |

2.8.2. Birżebbuġa - PM<sub>10</sub> and PM<sub>2.5</sub>

Table 17:  $\text{PM}_{10}$  and  $\text{PM}_{2.5}$  data for Birżebbuġa station – Report 7






2.8.3. Marsaxlokk – PM<sub>10</sub>vsPM<sub>2.5</sub> histogram

Figure 30: Marsaxlokk - PM<sub>10</sub>vsPM<sub>2.5</sub> histogram plot – Report 7





2.8.4. Birżebbuġa – PM<sub>10</sub>vsPM<sub>2.5</sub> histogram

Figure 31: Birżebbuġa - PM<sub>10</sub>vsPM<sub>2.5</sub> histogram plot – Report 7



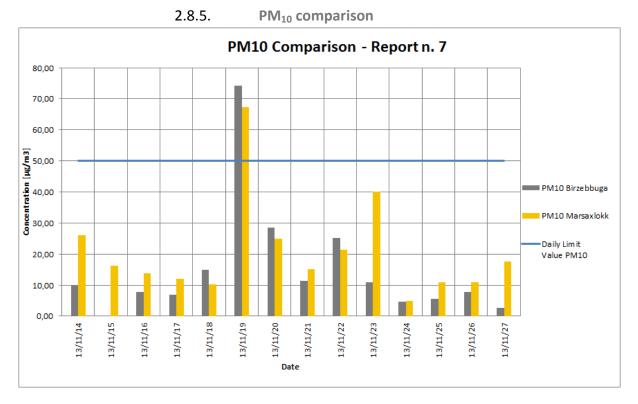



Figure 32: PM<sub>10</sub> comparison - histogram plot – Report 7



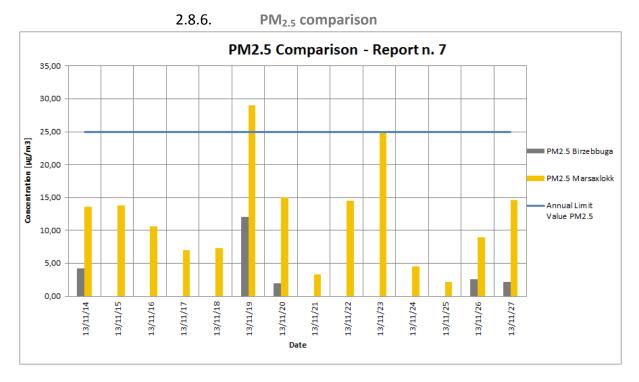



Figure 33: PM<sub>2.5</sub> comparison - histogram plot – Report 7



An analysis of the  $PM_{10}$ -exceedance at Marsaxlokk and Birżebbuġa on the  $19^{th}$  of November is included in Annex A. After applying mathemathical modelling tools and observing satelitte images, it was concluded that, on the  $19^{th}$  the  $PM_{10}$  excedeence could be attributed to a dust loading episode.

### 2.8.7. Quantification of African dust

The quantification of African dust has been determined only when exceedances of the daily limit value for  $PM_{10}$  were found. Applying the method reported in paragraph 1.4 and the data from Gharb station (this data from the Gharb station is at this stage raw, unverified data; should the verified data be different, revisions will be carried out), the following African dust loads were determined:

| Days affected by African dust episodes | African dust load [µg/m³] |
|----------------------------------------|---------------------------|
| 2013/11/19                             | 7.3                       |

Table 18: Determination of the African dust load.

By subtraction of the African dust load from the  $PM_{10}$  concentrations recorded in Marsaxlokk and Birżebbuġa, it can be determined when the exceedances are due to natural (adjusted value <50 µg/m<sup>3</sup>) or anthropogenic (adjusted value >50 µg/m<sup>3</sup>) origin. On the 19<sup>th</sup> November 2013, the calculated African dust was 7.3 µg/m<sup>3</sup>. After adjusting the Marsaxlokk and Birżebbuġa values, their  $PM_{10}$  concentrations were still above the daily limit value. Based on this and on the analysis performed in section 2.21, it was assumed that on the 19<sup>th</sup> November the final  $PM_{10}$  concentrations registered were not only affected by Saharan dust but also by anthropogenic activities.

| Data       | Adjusted value |            | Source                       |                              |
|------------|----------------|------------|------------------------------|------------------------------|
|            | Marsaxlokk     | Birżebbuġa | Marsaxlokk                   | Birżebbuġa                   |
| 2013/11/19 | 59.9           | 66.82      | Anthropogenic and<br>Natural | Anthropogenic and<br>Natural |

Table 19: Determination of the source for PM<sub>10</sub> exceedances.

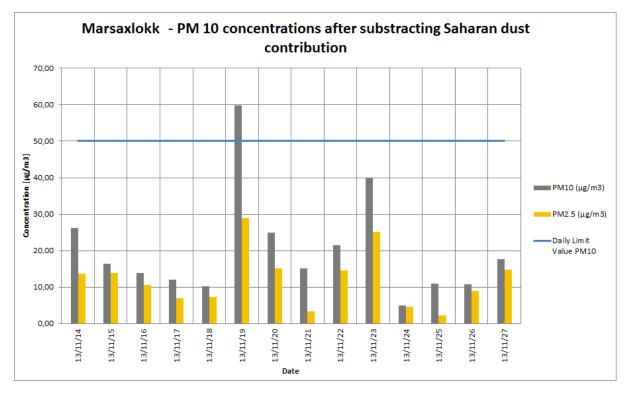
The following table reports the PM<sub>10</sub> concentrations after subtracting Saharan dust contribution:



| Day                             | Date                                   | ΡΜ <sub>10</sub><br>(μg/m <sup>3</sup> ) | PM <sub>2.5</sub><br>(μg/m <sup>3</sup> ) |
|---------------------------------|----------------------------------------|------------------------------------------|-------------------------------------------|
| Thursday                        | 13/11/14                               | 26.17                                    | 13.59                                     |
| Friday                          | 13/11/15                               | 16.29                                    | 13.75                                     |
| Saturday                        | 13/11/16                               | 13.91                                    | 10.64                                     |
| Sunday                          | 13/11/17                               | 12.09                                    | 6.97                                      |
| Monday                          | 13/11/18                               | 10.25                                    | 7.34                                      |
| Tuesday                         | 13/11/19                               | 59.9                                     | 28.98                                     |
| Wednesday                       | 13/11/20                               | 24.90                                    | 15.03                                     |
| Thursday                        | 13/11/21                               | 15.19                                    | 3.30                                      |
| Friday                          | 13/11/22                               | 21.42                                    | 14.48                                     |
| Saturday                        | 13/11/23                               | 40.09                                    | 25.10                                     |
| Sunday                          | 13/11/24                               | 4.95                                     | 4.58                                      |
| Monday                          | 13/11/25                               | 10.99                                    | 2.20                                      |
| Tuesday                         | 13/11/26                               | 10.80                                    | 8.98                                      |
| Wednesday                       | 13/11/27                               | 17.58                                    | 14.65                                     |
| Average during reporting period |                                        | 20.32                                    | 12.12                                     |
| Average during                  | Average during calendar year (to date) |                                          | 12.37                                     |

2.8.7.1. Marsaxlokk PM<sub>10</sub>concentrations after subtracting Saharan dust contribution

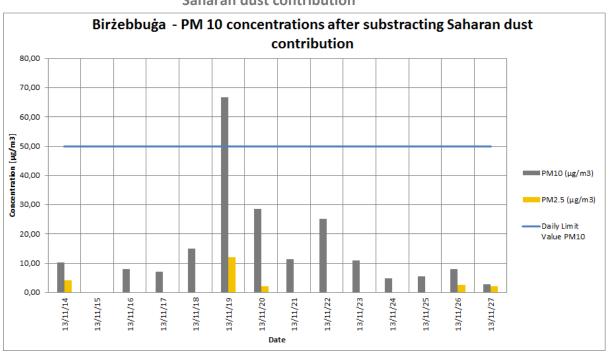
Table 20:  $PM_{10}$  adjusted values for Marsaxlokk station – Report 7




| Day                         | Date          | ΡΜ <sub>10</sub><br>(μg/m <sup>3</sup> ) | ΡΜ <sub>2.5</sub><br>(μg/m <sup>3</sup> ) |
|-----------------------------|---------------|------------------------------------------|-------------------------------------------|
| Thursday                    | 13/11/14      | 10.12                                    | 4.22                                      |
| Friday                      | 13/11/15      | <1.83                                    | <1.83                                     |
| Saturday                    | 13/11/16      | 7.87                                     | <1.83                                     |
| Sunday                      | 13/11/17      | 6.95                                     | <1.83                                     |
| Monday                      | 13/11/18      | 15.01                                    | <1.83                                     |
| Tuesday                     | 13/11/19      | 66.82                                    | 12.08                                     |
| Wednesday                   | 13/11/20      | 28.55                                    | 2.01                                      |
| Thursday                    | 13/11/21      | 11.35                                    | <1.83                                     |
| Friday                      | 13/11/22      | 25.07                                    | <1.83                                     |
| Saturday                    | 13/11/23      | 10.98                                    | <1.83                                     |
| Sunday                      | 13/11/24      | 4.76                                     | <1.83                                     |
| Monday                      | 13/11/25      | 5.49                                     | <1.83                                     |
| Tuesday                     | 13/11/26      | 7.87                                     | 2.56                                      |
| Wednesday                   | 13/11/27      | 2.75                                     | 2.20                                      |
| Average during period       | reporting     | 14.67                                    | 2.83                                      |
| Average during<br>(to date) | calendar year | 18.82                                    | 9.70                                      |

2.8.7.2. Birżebbuġa-PM<sub>10</sub>concentrations after subtracting Saharan dust contribution

Table 21:  $PM_{10}$  adjusted values for Birżebbuġa station – Report 7






2.8.8. Marsaxlokk – PM<sub>10</sub> concentration after substracting Saharan dust contribution







2.8.9. Birżebbuġa – PM<sub>10</sub> concentration after substracting Saharan dust contribution

Figure 35: Birżebbuġa – PM<sub>10</sub> concentrations after subtracting Saharan dust contribution



## 2.9. Report 8

The data period of this report is between the 28<sup>th</sup> November and the 11<sup>th</sup> December 2013 for an effective duration of 14 sampling days.

Due to power interruption complications it was not possible to collect sampling data in accordance with the minimum data capture requirements established by the directive.



### 2.10. Report 9

The data period of this report is between the 12<sup>th</sup> and the 22<sup>nd</sup> December 2013 for an effective duration of 11 sampling days.

The results of this monitoring period are given in the next paragraphs, which are first presented in tabular format in the following order:

- 1. Marsaxlokk station: PM<sub>10</sub> & PM<sub>2.5</sub>;
- 2. Birżebbuġa station: PM<sub>10</sub> & PM<sub>2.5</sub>;

Then, a series of significant plot comparisons are reported:

- PM<sub>10</sub> vs PM<sub>2.5</sub> at Marsaxlokk station;
- PM<sub>10</sub> vs PM<sub>2.5</sub> at Birżebbuġa station;
- PM<sub>10</sub> vs PM<sub>10</sub>;
- PM<sub>2.5</sub> vs PM<sub>2.5</sub>.

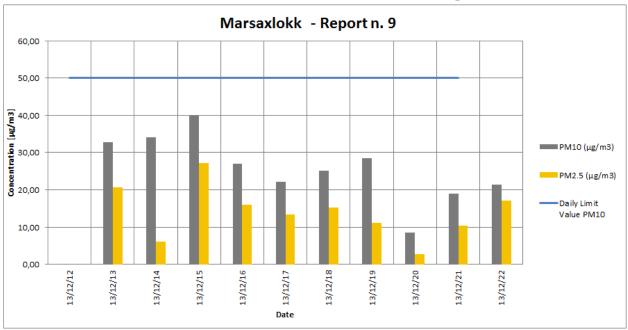


| 2.10.1.            | IVIAI SAXIORK - FIV  | 110 and Fivi2.5    |                   |
|--------------------|----------------------|--------------------|-------------------|
| Day                | Date                 | PM <sub>10</sub>   | PM <sub>2.5</sub> |
|                    |                      | (µg/m³)            | (µg/m³)           |
| Thursday           | 13/12/12             | N.V. <sup>15</sup> | N.V.              |
| Friday             | 13/12/13             | 32.78              | 20.70             |
| Saturday           | 13/12/14             | 34.06              | 6.04              |
| Sunday             | 13/12/15             | 40.10              | 27.11             |
| Monday             | 13/12/16             | 26.97              | 15.99             |
| Tuesday            | 13/12/17             | 22.15              | 13.37             |
| Wednesday          | 13/12/18             | 25.09              | 15.21             |
| Thursday           | 13/12/19             | 28.56              | 11.17             |
| Friday             | 13/12/20             | 8.60               | 2.75              |
| Saturday           | 13/12/21             | 19.04              | 10.44             |
| Sunday             | 13/12/22             | 21.42              | 17.04             |
| Average during rep | porting period       | 25.88              | 13.98             |
| Average during cal | endar year (to date) | 27.22              | 10.65             |

2.10.1. Marsaxlokk - PM<sub>10</sub> and PM<sub>2.5</sub>

Table 22: PM<sub>10</sub> and PM<sub>2.5</sub> data for Marsaxlokk station – Report 9

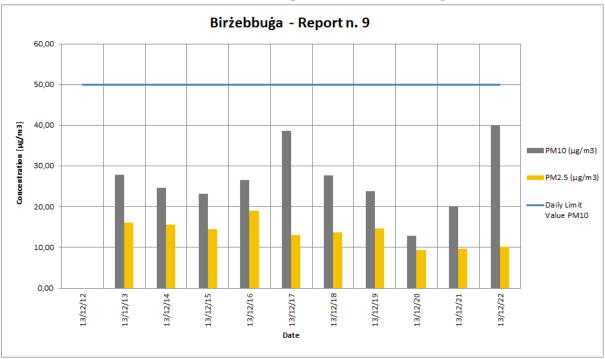



ingegneria ambientale e laboratori

|                | 2.10.2. B               | Birżebbuġa - P                           | M <sub>10</sub> and PM <sub>2.5</sub>     |
|----------------|-------------------------|------------------------------------------|-------------------------------------------|
| Day            | Date                    | ΡΜ <sub>10</sub><br>(μg/m <sup>3</sup> ) | ΡΜ <sub>2.5</sub><br>(μg/m <sup>3</sup> ) |
| Thursday       | 13/12/12                | N.V. <sup>16</sup>                       | N.V.                                      |
| Friday         | 13/12/13                | 27.82                                    | 16.11                                     |
| Saturday       | 13/12/14                | 24.71                                    | 15.56                                     |
| Sunday         | 13/12/15                | 23.24                                    | 14.47                                     |
| Monday         | 13/12/16                | 26.55                                    | 18.95                                     |
| Tuesday        | 13/12/17                | 38.62                                    | 13.00                                     |
| Wednesday      | 13/12/18                | 27.64                                    | 13.73                                     |
| Thursday       | 13/12/19                | 23.79                                    | 14.64                                     |
| Friday         | 13/12/20                | 12.81                                    | 9.34                                      |
| Saturday       | 13/12/21                | 20.13                                    | 9.70                                      |
| Sunday         | 13/12/22                | 39.91                                    | 10.07                                     |
| Average during | reporting period        | 26.52                                    | 13.56                                     |
| Average during | calendar year (to date) | 20.17                                    | 9.22                                      |

Table 23:  $PM_{10}$  and  $PM_{2.5}$  data for Birżebbuġa station – Report 9

<sup>16</sup> Non valid data due to power interruption






2.10.3. Marsaxlokk – PM<sub>10</sub>vsPM<sub>2.5</sub> histogram

Figure 36: Marsaxlokk - PM<sub>10</sub>vsPM<sub>2.5</sub> histogram plot – Report 9





2.10.4. Birżebbuġa – PM<sub>10</sub>vsPM<sub>2.5</sub> histogram

Figure 37: Birżebbuġa - PM<sub>10</sub>vsPM<sub>2.5</sub> histogram plot – Report 9



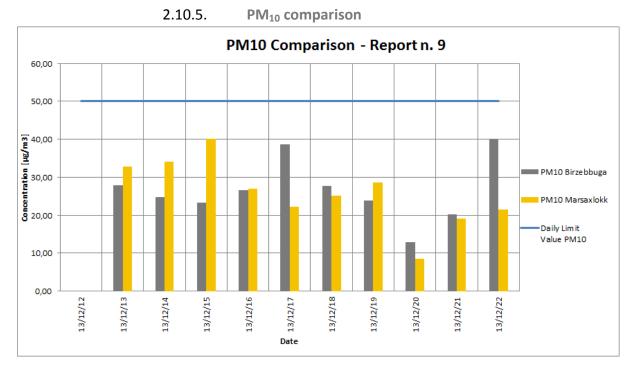



Figure 38: PM<sub>10</sub> comparison - histogram plot - Report 9



AIR QUALITY MONITORING AT MARSAXLOKK AND BIRŻEBBUĠA

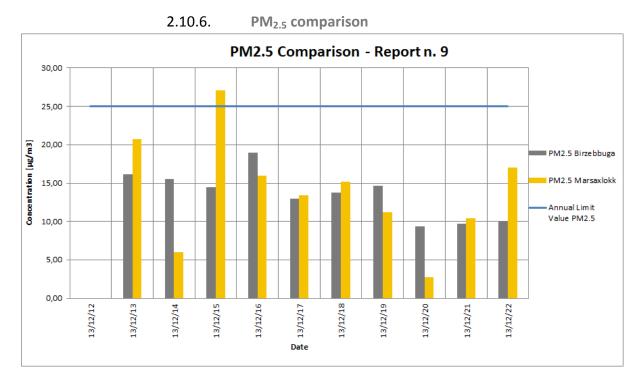



Figure 39: PM<sub>2.5</sub> comparison - histogram plot – Report 9



### 2.11. Report 10

The data period of this report is between the 23<sup>rd</sup> December 2013 and the 6<sup>th</sup> January 2014 for an effective duration of 15 sampling days.

The results of this monitoring period are given in the next paragraphs, which are first presented in tabular format in the following order:

- 1. Marsaxlokk station: PM<sub>10</sub> & PM<sub>2.5</sub>;
- 2. Birżebbuġa station: PM<sub>10</sub> & PM<sub>2.5</sub>;

Then, a series of significant plot comparisons are reported:

- PM<sub>10</sub> vs PM<sub>2.5</sub> at Marsaxlokk station;
- PM<sub>10</sub> vs PM<sub>2.5</sub> at Birżebbuġa station;
- PM<sub>10</sub> vs PM<sub>10</sub>;
- PM<sub>2.5</sub> vs PM<sub>2.5</sub>.



| $2.11.1. IVIAISAXIOKK - PIVI_10 ATTU PIVI_{2.5}$ |                      |                                          |                                           |
|--------------------------------------------------|----------------------|------------------------------------------|-------------------------------------------|
| Day                                              | Date                 | ΡΜ <sub>10</sub><br>(μg/m <sup>3</sup> ) | ΡΜ <sub>2.5</sub><br>(μg/m <sup>3</sup> ) |
| Monday                                           | 13/12/23             | 13.64                                    | 12.29                                     |
| Tuesday                                          | 13/12/24             | 25.81                                    | 11.91                                     |
| Wednesday                                        | 13/12/25             | 23.98                                    | 13.56                                     |
| Thursday                                         | 13/12/26             | 31.86                                    | 11.91                                     |
| Friday                                           | 13/12/27             | 21.97                                    | 12.64                                     |
| Saturday                                         | 13/12/28             | 38.28                                    | 17.59                                     |
| Sunday                                           | 13/12/29             | 35.52                                    | 16.49                                     |
| Monday                                           | 13/12/30             | 29.11                                    | 13.92                                     |
| Tuesday                                          | 13/12/31             | 23.67                                    | 10.18                                     |
| Wednesday                                        | 14/01/01             | 26.18                                    | 11.91                                     |
| Thursday                                         | 14/01/02             | 28.75                                    | 14.84                                     |
| Friday                                           | 14/01/03             | 33.88                                    | 15.94                                     |
| Saturday                                         | 14/01/04             | 14.28                                    | 13.92                                     |
| Sunday                                           | 14/01/05             | 26.18                                    | 11.36                                     |
| Monday                                           | 14/01/06             | 18.31                                    | 10.26                                     |
| Average during rep                               | oorting period       | 26.09                                    | 13.25                                     |
| Average during cal                               | endar year (to date) | 27.06                                    | 11.13                                     |
|                                                  |                      |                                          |                                           |

2.11.1. Marsaxlokk - PM<sub>10</sub> and PM<sub>2.5</sub>

Table 24: PM<sub>10</sub> and PM<sub>2.5</sub> data for Marsaxlokk station – Report 10



| Day            | Date                    | ΡΜ <sub>10</sub><br>(μg/m <sup>3</sup> ) | ΡΜ <sub>2.5</sub><br>(μg/m <sup>3</sup> ) |
|----------------|-------------------------|------------------------------------------|-------------------------------------------|
| Monday         | 13/12/23                | 18.52                                    | 8.83                                      |
| Tuesday        | 13/12/24                | 31.11                                    | 10.62                                     |
| Wednesday      | 13/12/25                | 18.12                                    | 10.25                                     |
| Thursday       | 13/12/26                | 27.09                                    | 8.79                                      |
| Friday         | 13/12/27                | 17.75                                    | 6.77                                      |
| Saturday       | 13/12/28                | 22.14                                    | 10.80                                     |
| Sunday         | 13/12/29                | 19.22                                    | 9.15                                      |
| Monday         | 13/12/30                | 19.22                                    | 10.43                                     |
| Tuesday        | 13/12/31                | 14.28                                    | 7.32                                      |
| Wednesday      | 14/01/01                | 18.48                                    | 8.24                                      |
| Thursday       | 14/01/02                | 23.80                                    | 12.44                                     |
| Friday         | 14/01/03                | 29.28                                    | 17.75                                     |
| Saturday       | 14/01/04                | N.V. <sup>17</sup>                       | N.V.                                      |
| Sunday         | 14/01/05                | N.V.                                     | N.V.                                      |
| Monday         | 14/01/06                | N.V.                                     | N.V.                                      |
| Average during | reporting period        | 21.58                                    | 10.12                                     |
| Average during | calendar year (to date) | 20.42                                    | 9.33                                      |

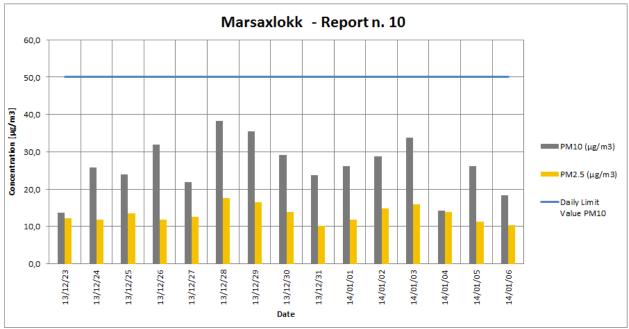
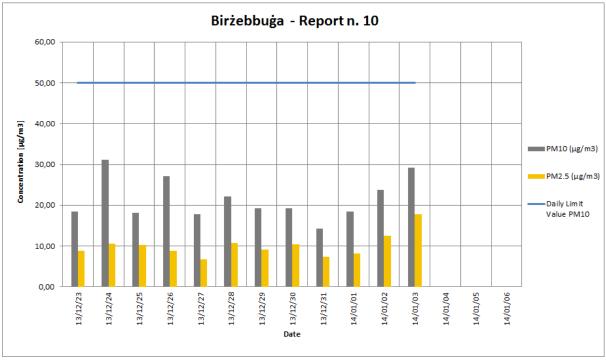

#### 2.11.2. Birżebbuġa - PM<sub>10</sub> and PM<sub>2.5</sub>

Table 25:  $\text{PM}_{10}$  and  $\text{PM}_{2.5}$  data for Birżebbuġa station – Report 10

 $^{\rm 17}$  Non valid data due to power interruption. ambiente ŧ

77






2.11.3. Marsaxlokk – PM<sub>10</sub>vsPM<sub>2.5</sub> histogram

Figure 40: Marsaxlokk - PM<sub>10</sub>vsPM<sub>2.5</sub> histogram plot – Report 10





2.11.4. Birżebbuġa – PM<sub>10</sub>vsPM<sub>2.5</sub> histogram

Figure 41: Birżebbuga - PM<sub>10</sub>vsPM<sub>2.5</sub> histogram plot – Report 10



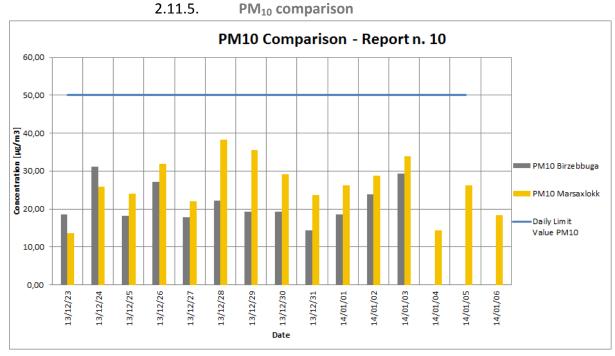



Figure 42: PM<sub>10</sub> comparison - histogram plot – Report 10



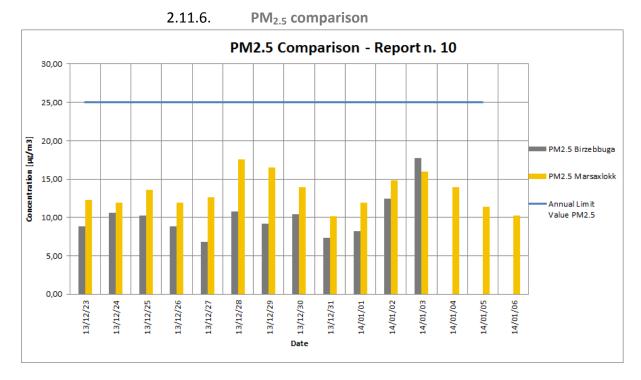



Figure 43: PM<sub>2.5</sub> comparison - histogram plot – Report 10



### 2.12. Report 11

The data period of this report is between the 7<sup>th</sup> and the 21<sup>st</sup> January 2014 for an effective duration of 15 sampling days.

The results of this monitoring period are given in the next paragraphs, which are first presented in tabular format in the following order:

- 1. Marsaxlokk station: PM<sub>10</sub> & PM<sub>2.5</sub>;
- 2. Birżebbuġa station: PM<sub>10</sub> & PM<sub>2.5</sub>;

Then, a series of significant plot comparisons are reported:

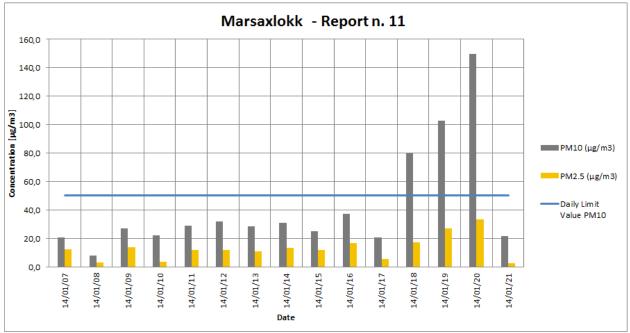
- PM<sub>10</sub> vs PM<sub>2.5</sub> at Marsaxlokk station;
- PM<sub>10</sub> vs PM<sub>2.5</sub> at Birżebbuġa station;
- PM<sub>10</sub> vs PM<sub>10</sub>;
- PM<sub>2.5</sub> vs PM<sub>2.5</sub>.



| 2:12:1:                                          | $2.12.1. IVIdISdXIOKK - PIVI_{10} driu PIVI_{2.5}$ |                             |                              |
|--------------------------------------------------|----------------------------------------------------|-----------------------------|------------------------------|
| Day                                              | Date                                               | PM <sub>10</sub><br>(μg/m³) | ΡΜ <sub>2.5</sub><br>(µg/m³) |
| Tuesday                                          | 14/01/07                                           | 20.5                        | 12.53                        |
| Wednesday                                        | 14/01/08                                           | 8.1                         | 3.11                         |
| Thursday                                         | 14/01/09                                           | 27.1                        | 13.65                        |
| Friday                                           | 14/01/10                                           | 22.2                        | 3.48                         |
| Saturday                                         | 14/01/11                                           | 28.9                        | 11.73                        |
| Sunday                                           | 14/01/12                                           | 31.9                        | 11.92                        |
| Monday                                           | 14/01/13                                           | 28.4                        | 11.00                        |
| Tuesday                                          | 14/01/14                                           | 30.9                        | 13.38                        |
| Wednesday                                        | 14/01/15                                           | 24.9                        | 11.92                        |
| Thursday                                         | 14/01/16                                           | 37.2                        | 16.87                        |
| Friday                                           | 14/01/17                                           | 20.70                       | 5.68                         |
| Saturday                                         | 14/01/18                                           | 79.86                       | 17.24                        |
| Sunday                                           | 14/01/19                                           | 102.63                      | 26.85                        |
| Monday                                           | 14/01/20                                           | 149.62                      | 33.37                        |
| Tuesday                                          | 14/01/21                                           | 21.61                       | 2.57                         |
| Average during                                   | reporting period                                   | 42.29                       | 13.43                        |
| Average during calendar year (to date)29.0611.43 |                                                    |                             | 11.43                        |

2.12.1. Marsaxlokk - PM<sub>10</sub> and PM<sub>2.5</sub>

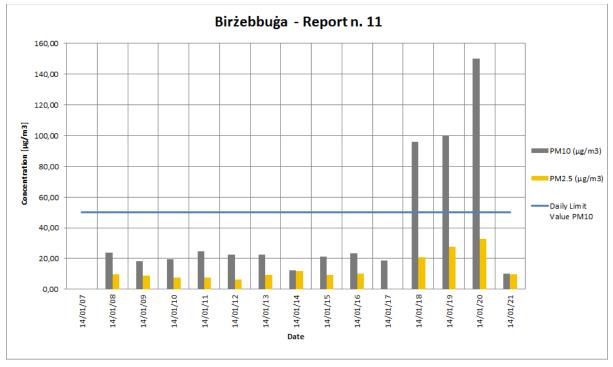
Table 26:  $\mathsf{PM}_{10}$  and  $\mathsf{PM}_{2.5}$  data for Marsaxlokk station – Report 11




| Day               | Date                  | ΡΜ <sub>10</sub><br>(μg/m <sup>3</sup> ) | ΡΜ <sub>2.5</sub><br>(μg/m <sup>3</sup> ) |
|-------------------|-----------------------|------------------------------------------|-------------------------------------------|
| Tuesday           | 14/01/07              | N.V.                                     | N.V.                                      |
| Wednesday         | 14/01/08              | 23.79                                    | 9.89                                      |
| Thursday          | 14/01/09              | 18.33                                    | 8.87                                      |
| Friday            | 14/01/10              | 19.40                                    | 7.69                                      |
| Saturday          | 14/01/11              | 24.71                                    | 7.69                                      |
| Sunday            | 14/01/12              | 22.70                                    | 6.41                                      |
| Monday            | 14/01/13              | 22.70                                    | 9.52                                      |
| Tuesday           | 14/01/14              | 12.45                                    | 11.90                                     |
| Wednesday         | 14/01/15              | 21.41                                    | 9.34                                      |
| Thursday          | 14/01/16              | 23.43                                    | 10.25                                     |
| Friday            | 14/01/17              | 18.85                                    | <1.83                                     |
| Saturday          | 14/01/18              | 95.73                                    | 20.88                                     |
| Sunday            | 14/01/19              | 99.94                                    | 27.64                                     |
| Monday            | 14/01/20              | 150.25                                   | 32.96                                     |
| Tuesday           | 14/01/21              | 10.25                                    | 9.88                                      |
| Average during re | porting period        | 40.28                                    | 13.30                                     |
| Average during ca | lendar year (to date) | 23.86                                    | 9.79                                      |

# 2.12.2. Birżebbuġa - PM<sub>10</sub> and PM<sub>2.5</sub>

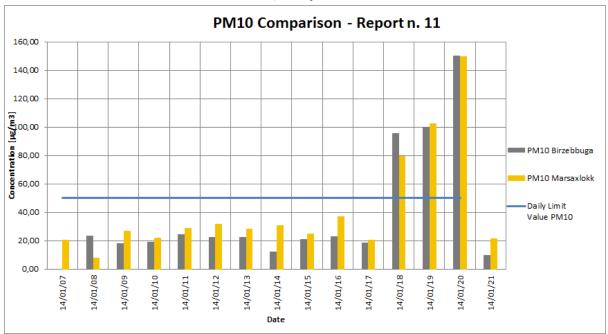
Table 27:  $\text{PM}_{10}$  and  $\text{PM}_{2.5}$  data for Birżebbuġa station – Report 11






2.12.3. Marsaxlokk – PM<sub>10</sub>vsPM<sub>2.5</sub> histogram

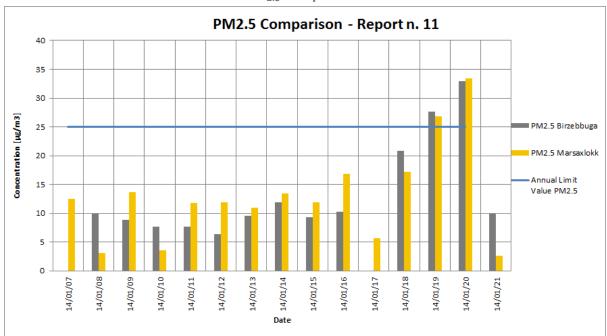
Figure 44: Marsaxlokk - PM<sub>10</sub>vsPM<sub>2.5</sub> histogram plot – Report 11






2.12.4. Birżebbuġa – PM<sub>10</sub>vsPM<sub>2.5</sub> histogram

Figure 45: Birżebbuġa - PM<sub>10</sub>vsPM<sub>2.5</sub> histogram plot – Report 11






2.12.5. PM<sub>10</sub> comparison

Figure 46: PM<sub>10</sub> comparison - histogram plot – Report 11





2.12.6. PM<sub>2.5</sub> comparison

Figure 47: PM<sub>2.5</sub> comparison - histogram plot – Report 11



### 2.12.7. Quantification of African dust

The quantification of African dust has been determined only when exceedances of the daily limit value for  $PM_{10}$  were found. The method reported in paragraph 1.4 was applied, taking the data from the Għarb station (Note: the data from the Għarb station is still raw at this stage i.e. unverified data; should the verified data be different, revisions will be carried out), the following African dust loads were determined:

| Days affected by African dust episodes | African dust load [µg/m³] |
|----------------------------------------|---------------------------|
| 2014/01/18                             | 108.55                    |
| 2014/01/19                             | 88.81                     |
| 2014/01/20                             | 71.98                     |

Table 28: Determination of the African dust load

By subtracting the African dust load from the  $PM_{10}$  concentrations recorded in Marsaxlokk and Birżebbuġa, one can determinwhen the exceedances are due to natural (adjusted value <50 µg/m<sup>3</sup>) or anthropogenic (adjusted value >50 µg/m<sup>3</sup>) origin. On the 18<sup>th</sup> January, the calculated African dust was 108.55 µg/m<sup>3</sup>, on the 19<sup>th</sup> January, it was 88.81 µg/m<sup>3</sup> and on the 20<sup>th</sup> January, it was 71.98 µg/m<sup>3</sup>. After adjusting the Marsaxlokk and Birżebbuġa values, the  $PM_{10}$  concentrations were below the daily limit value. Based on this, and on the analysis performed in section 0 it was assumed that on the 18<sup>th</sup>, 19<sup>th</sup> and 20<sup>th</sup> January, the final  $PM_{10}$  concentrations registered were affected by Saharan dust episodes.

| Data       | Adjusted value |            | Source     |            |
|------------|----------------|------------|------------|------------|
|            | Marsaxlokk     | Birżebbuġa | Marsaxlokk | Birżebbuġa |
| 2014/01/18 | 7.88           | 23.75      | Natural    | Natural    |
| 2014/01/19 | 13.82          | 11.13      | Natural    | Natural    |
| 2014/01/20 | 41.07          | 41.70      | Natural    | Natural    |

Table 29: Determination of the source for PM<sub>10</sub> exceedances

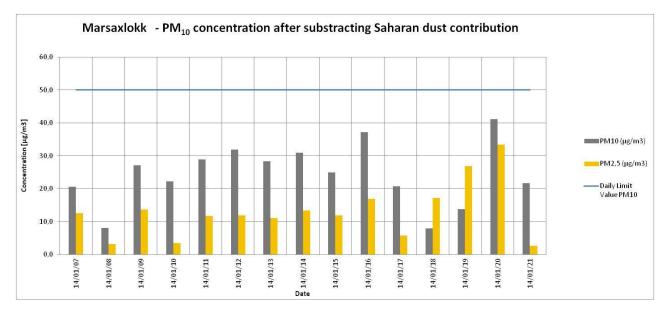


### The following table reports the PM<sub>10</sub> concentrations after subtracting Saharan dust contribution:

| Day               | Date                  | ΡΜ <sub>10</sub><br>(μg/m <sup>3</sup> ) | ΡΜ <sub>2.5</sub><br>(μg/m <sup>3</sup> ) |
|-------------------|-----------------------|------------------------------------------|-------------------------------------------|
| Tuesday           | 14/01/07              | 20.5                                     | 12.53                                     |
| Wednesday         | 14/01/08              | 8.1                                      | 3.11                                      |
| Thursday          | 14/01/09              | 27.1                                     | 13.65                                     |
| Friday            | 14/01/10              | 22.2                                     | 3.48                                      |
| Saturday          | 14/01/11              | 28.9                                     | 11.73                                     |
| Sunday            | 14/01/12              | 31.9                                     | 11.92                                     |
| Monday            | 14/01/13              | 28.4                                     | 11.00                                     |
| Tuesday           | 14/01/14              | 30.9                                     | 13.38                                     |
| Wednesday         | 14/01/15              | 24.9                                     | 11.92                                     |
| Thursday          | 14/01/16              | 37.2                                     | 16.87                                     |
| Friday            | 14/01/17              | 20.70                                    | 5.68                                      |
| Saturday          | 14/01/18              | 7.88                                     | 17.24                                     |
| Sunday            | 14/01/19              | 13.82                                    | 26.85                                     |
| Monday            | 14/01/20              | 41.07                                    | 33.37                                     |
| Tuesday           | 14/01/21              | 21.61                                    | 2.57                                      |
| Average during re | porting period        | 25.25                                    | 13.43                                     |
| Average during ca | lendar year (to date) | 26.83                                    | 11.43                                     |

**2.12.7.1.** Marsaxlokk  $PM_{10}$  concentrations after subtracting Saharan dust contribution

Table 30:  $PM_{10}$  adjusted values for Marsaxlokk station – Report 11




| Day                                    | Date     | ΡΜ <sub>10</sub><br>(μg/m <sup>3</sup> ) | ΡΜ <sub>2.5</sub><br>(μg/m <sup>3</sup> ) |
|----------------------------------------|----------|------------------------------------------|-------------------------------------------|
| Tuesday                                | 14/01/07 | N.V.                                     | N.V.                                      |
| Wednesday                              | 14/01/08 | 23.79                                    | 9.89                                      |
| Thursday                               | 14/01/09 | 18.33                                    | 8.87                                      |
| Friday                                 | 14/01/10 | 19.40                                    | 7.69                                      |
| Saturday                               | 14/01/11 | 24.71                                    | 7.69                                      |
| Sunday                                 | 14/01/12 | 22.70                                    | 6.41                                      |
| Monday                                 | 14/01/13 | 22.70                                    | 9.52                                      |
| Tuesday                                | 14/01/14 | 12.45                                    | 11.90                                     |
| Wednesday                              | 14/01/15 | 21.41                                    | 9.34                                      |
| Thursday                               | 14/01/16 | 23.43                                    | 10.25                                     |
| Friday                                 | 14/01/17 | 18.85                                    | <1.83                                     |
| Saturday                               | 14/01/18 | 23.75                                    | 20.88                                     |
| Sunday                                 | 14/01/19 | 11.13                                    | 27.64                                     |
| Monday                                 | 14/01/20 | 41.70                                    | 32.96                                     |
| Tuesday                                | 14/01/21 | 10.25                                    | 9.88                                      |
| Average during reporting period        |          | 21.04                                    | 13.30                                     |
| Average during calendar year (to date) |          | 20.52                                    | 9.79                                      |

**2.12.7.2.** Birżebbuġa-PM<sub>10</sub> concentrations after subtracting Saharan dust contribution

Table 31: PM<sub>10</sub> adjusted values for Birżebbuġa station – Report 11





2.12.7.3. Marsaxlokk – PM<sub>10</sub> concentration after substracting Saharan dust contribution

Figure 48: Marsaxlokk – PM<sub>10</sub> concentrations after subtracting Saharan dust contribution



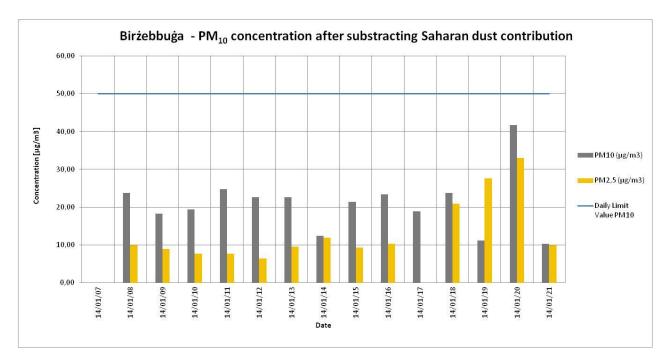



Figure 49: Birżebbuģa –  $PM_{10}$  concentrations after subtracting Saharan dust contribution



## 2.13. Report 12

The data period of this report is between the 22<sup>nd</sup> Janurary and the 5<sup>th</sup> February 2014 for an effective duration of 15 sampling days.

The results of this monitoring period are given in the next paragraphs, which are first presented in tabular format in the following order:

- 1. Marsaxlokk station: PM<sub>10</sub> & PM<sub>2.5</sub>;
- 2. Birżebbuġa station: PM<sub>10</sub> & PM<sub>2.5</sub>;

Then, a series of significant plot comparisons are reported:

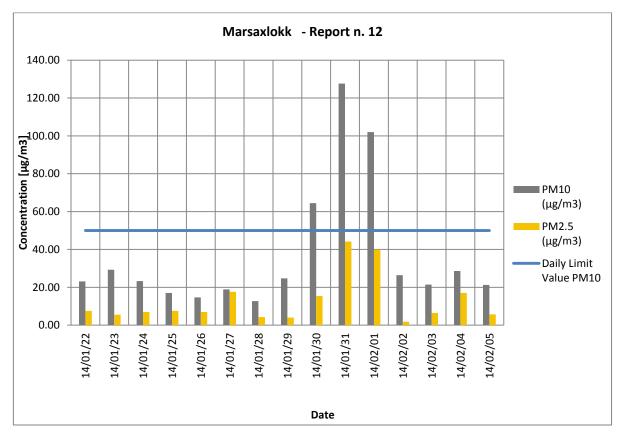
- PM<sub>10</sub> vs PM<sub>2.5</sub> at Marsaxlokk station;
- PM<sub>10</sub> vs PM<sub>2.5</sub> at Birżebbuġa station;
- PM<sub>10</sub> vs PM<sub>10</sub>;
- PM<sub>2.5</sub> vs PM<sub>2.5</sub>.



| 2.13.1. Warsaxlokk - $PW_{10}$ and $PW_{2.5}$ |                                 |                                          |                              |  |
|-----------------------------------------------|---------------------------------|------------------------------------------|------------------------------|--|
| Day                                           | Date                            | PM <sub>10</sub><br>(μg/m <sup>3</sup> ) | ΡΜ <sub>2.5</sub><br>(µg/m³) |  |
| Wednesday                                     | 14/01/22                        | 23.10                                    | 7.55                         |  |
| Thursday                                      | 14/01/23                        | 29.30                                    | 5.50                         |  |
| Friday                                        | 14/01/24                        | 23.26                                    | 6.97                         |  |
| Saturday                                      | 14/01/25                        | 17.02                                    | 7.52                         |  |
| Sunday                                        | 14/01/26                        | 14.65                                    | 6.97                         |  |
| Monday                                        | 14/01/27                        | 18.86                                    | 17.60                        |  |
| Tuesday                                       | 14/01/28                        | 12.73                                    | 4.25                         |  |
| Wednesday                                     | 14/01/29                        | 24.72                                    | 4.03                         |  |
| Thursday                                      | 14/01/30                        | 64.46                                    | 15.41                        |  |
| Friday                                        | 14/01/31                        | 127.61                                   | 44.20                        |  |
| Saturday                                      | 14/02/01                        | 102.00                                   | 39.96                        |  |
| Sunday                                        | 14/02/02                        | 26.37                                    | 1.83                         |  |
| Monday                                        | 14/02/03                        | 21.43                                    | 6.41                         |  |
| Tuesday                                       | 14/02/04                        | 28.57                                    | 17.05                        |  |
| Wednesday                                     | 14/02/05                        | 21.24                                    | 5.68                         |  |
| Average during                                | Average during reporting period |                                          | 12.73                        |  |
| Average during                                | calendar year (to date)         | 27.65                                    | 11.61                        |  |

2.13.1. Marsaxlokk - PM<sub>10</sub> and PM<sub>2.5</sub>

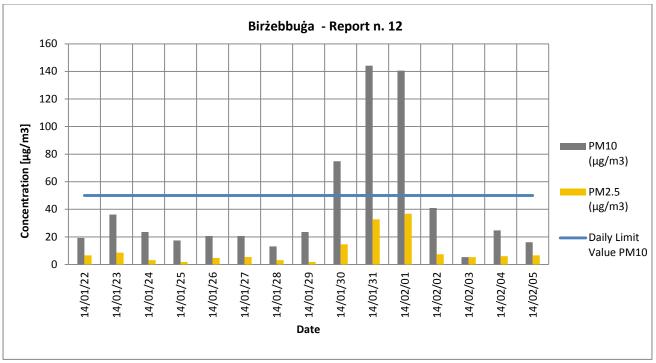
Table 32:  $\text{PM}_{10}$  and  $\text{PM}_{2.5}$  data for Marsaxlokk station – Report 12




| Day               | Date                  | ΡΜ <sub>10</sub><br>(μg/m <sup>3</sup> ) | ΡΜ <sub>2.5</sub><br>(μg/m <sup>3</sup> ) |
|-------------------|-----------------------|------------------------------------------|-------------------------------------------|
| Wednesday         | 14/01/22              | 19.24                                    | 6.64                                      |
| Thursday          | 14/01/23              | 36.25                                    | 8.60                                      |
| Friday            | 14/01/24              | 23.61                                    | 3.11                                      |
| Saturday          | 14/01/25              | 17.39                                    | 1.83                                      |
| Sunday            | 14/01/26              | 20.68                                    | 4.76                                      |
| Monday            | 14/01/27              | 20.68                                    | 5.49                                      |
| Tuesday           | 14/01/28              | 13.18                                    | 3.11                                      |
| Wednesday         | 14/01/29              | 23.61                                    | 1.83                                      |
| Thursday          | 14/01/30              | 74.88                                    | 14.65                                     |
| Friday            | 14/01/31              | 144.19                                   | 32.77                                     |
| Saturday          | 14/02/01              | 140.58                                   | 36.79                                     |
| Sunday            | 14/02/02              | 40.94                                    | 7.38                                      |
| Monday            | 14/02/03              | 5.31                                     | 5.31                                      |
| Tuesday           | 14/02/04              | 24.71                                    | 6.04                                      |
| Wednesday         | 14/02/05              | 16.10                                    | 6.64                                      |
| Average during re | porting period        | 41.42                                    | 9.66                                      |
| Average during ca | lendar year (to date) | 23.72                                    | 9.71                                      |

# 2.13.2. Birżebbuġa - PM<sub>10</sub> and PM<sub>2.5</sub>

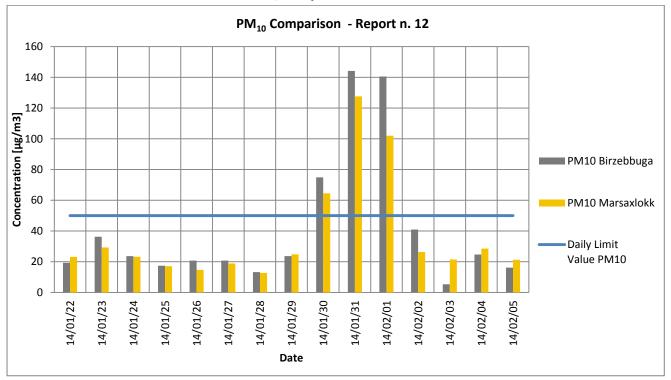
Table 33:  $\rm PM_{10}$  and  $\rm PM_{2.5}$  data for Birżebbuġa station – Report 12






2.13.3. Marsaxlokk – PM<sub>10</sub>vsPM<sub>2.5</sub> histogram

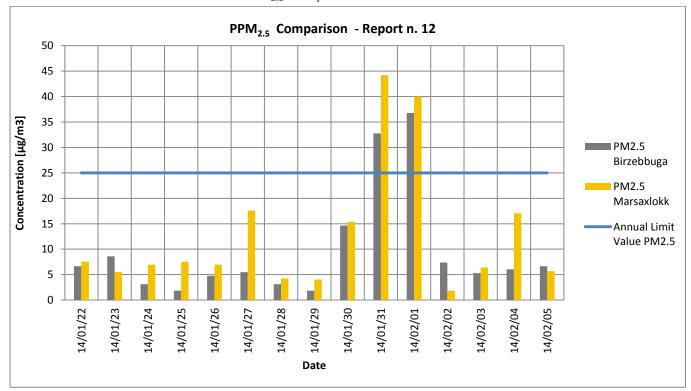
Figure 50: Marsaxlokk - PM<sub>10</sub>vsPM<sub>2.5</sub> histogram plot – Report 12






2.13.4. Birżebbuġa – PM<sub>10</sub>vsPM<sub>2.5</sub> histogram

Figure 51: Birżebbuġa - PM<sub>10</sub>vsPM<sub>2.5</sub> histogram plot – Report 12






2.13.5. PM<sub>10</sub> comparison

Figure 52: PM<sub>10</sub> comparison - histogram plot – Report 12





2.13.6. PM<sub>2.5</sub> comparison

Figure 53: PM<sub>2.5</sub> comparison - histogram plot – Report 12



## 2.13.7. Quantification of African dust

The quantification of African dust has been determined only when exceedances of the daily limit value for  $PM_{10}$  were found. The method reported in paragraph 1.4 was applied, taking the data from the Għarb station (Note: the data from the Għarb station is still raw at this stage i.e. unverified data; should the verified data be different, revisions will be carried out), the following African dust loads were determined:

| Days affected by African dust episodes | African dust load [µg/m³] |
|----------------------------------------|---------------------------|
| 2014/01/30                             | 40.82                     |
| 2014/01/31                             | 81.95                     |
| 2014/02/01                             | 90.48                     |

Table 34: Determination of the African dust load

By subtracting the African dust load from the  $PM_{10}$  concentrations recorded in Marsaxlokk and Birżebbuġa, one can determine when the exceedances are due to natural (adjusted value <50  $\mu$ g/m<sup>3</sup>) or anthropogenic (adjusted value >50  $\mu$ g/m<sup>3</sup>) origin.

On the 30<sup>th</sup> January, the calculated African dust was 40.82  $\mu$ g/m<sup>3</sup>, on the 31<sup>st</sup> January, it was 81.95  $\mu$ g/m<sup>3</sup> and on the 1<sup>st</sup> February was 90.48  $\mu$ g/m<sup>3</sup>. After adjusting the values, the PM<sub>10</sub> concentrations at Marsaxlokk on the 30<sup>th</sup>, 31<sup>st</sup> and 1<sup>st</sup> were below the daily limit value. Based on this, and on the analysis performed in section **Error! Reference source not found.** it was assumed that the final PM<sub>10</sub> oncentrations registered on Marsaxlokk were affected by Saharan dust episodes.

In Birżebbuġa, after adjusting the values and after the analysis performed in section **Error! Reference ource not found.**, it could be concluded that on the  $30^{th}$ , the high concentration could be attributed to natural sources, on the  $31^{st}$  to natural, and to anthropogenic sources and finally, on the  $1^{st}$  February, due to natural sources, as it was considered that the exceedance on the daily limit value, 0.10 µg/m<sup>3</sup>, was due to the instrinsict uncertainty of the measurement instruments.

| Adjuste<br>Data |            | Adjusted value [µg/m <sup>3</sup> ] Source |            | ource                 |
|-----------------|------------|--------------------------------------------|------------|-----------------------|
| Data            | Marsaxlokk | Birżebbuġa                                 | Marsaxlokk | Birżebbuġa            |
| 2014/01/30      | 23.64      | 34.07                                      | Natural    | Natural               |
| 2014/01/31      | 45.66      | 62.24                                      | Natural    | Natural/Anthropogenic |
| 2014/02/01      | 11.52      | 50.10                                      | Natural    | Natural               |

Table 35: Determination of the source for PM<sub>10</sub> exceedances

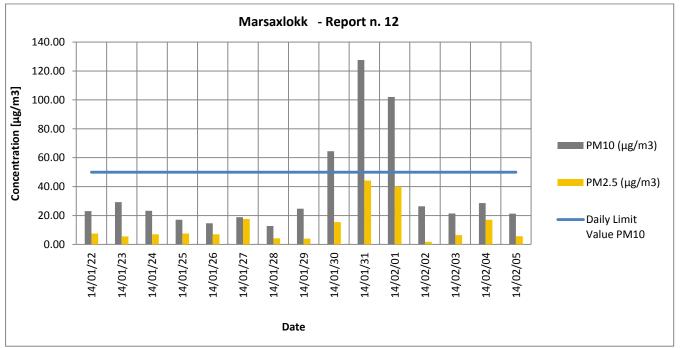


#### The following table reports the PM<sub>10</sub> concentrations after subtracting Saharan dust contribution:

| Day                                    | Date     | ΡΜ <sub>10</sub><br>(μg/m <sup>3</sup> ) | ΡΜ <sub>2.5</sub><br>(μg/m <sup>3</sup> ) |
|----------------------------------------|----------|------------------------------------------|-------------------------------------------|
| Wednesday                              | 14/01/22 | 23.10                                    | 7.55                                      |
| Thursday                               | 14/01/23 | 29.30                                    | 5.50                                      |
| Friday                                 | 14/01/24 | 23.26                                    | 6.97                                      |
| Saturday                               | 14/01/25 | 17.02                                    | 7.52                                      |
| Sunday                                 | 14/01/26 | 14.65                                    | 6.97                                      |
| Monday                                 | 14/01/27 | 18.86                                    | 17.60                                     |
| Tuesday                                | 14/01/28 | 12.73                                    | 4.25                                      |
| Wednesday                              | 14/01/29 | 24.72                                    | 4.03                                      |
| Thursday                               | 14/01/30 | 23.64                                    | 15.41                                     |
| Friday                                 | 14/01/31 | 45.66                                    | 44.20                                     |
| Saturday                               | 14/02/01 | 11.52                                    | 39.96                                     |
| Sunday                                 | 14/02/02 | 26.37                                    | 1.83                                      |
| Monday                                 | 14/02/03 | 21.43                                    | 6.41                                      |
| Tuesday                                | 14/02/04 | 28.57                                    | 17.05                                     |
| Wednesday                              | 14/02/05 | 21.24                                    | 5.68                                      |
| Average during reporting period        |          | 22.80                                    | 12.73                                     |
| Average during calendar year (to date) |          | 26.38                                    | 11.61                                     |

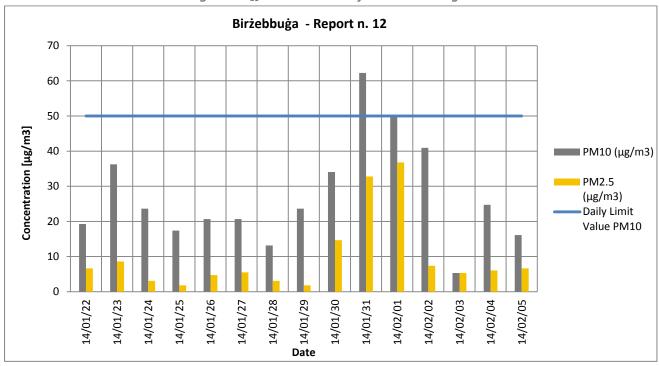
**2.13.7.1.** Marsaxlokk  $PM_{10}$  concentrations after subtracting Saharan dust contribution

Table 36:  $\ensuremath{\mathsf{PM}_{10}}$  adjusted values for Marsaxlokk station – Report 12




| Day            | Date                    | ΡΜ <sub>10</sub><br>(μg/m³) | ΡΜ <sub>2.5</sub><br>(μg/m <sup>3</sup> ) |
|----------------|-------------------------|-----------------------------|-------------------------------------------|
| Wednesday      | 14/01/22                | 19.24                       | 6.64                                      |
| Thursday       | 14/01/23                | 36.25                       | 8.60                                      |
| Friday         | 14/01/24                | 23.61                       | 3.11                                      |
| Saturday       | 14/01/25                | 17.39                       | 1.83                                      |
| Sunday         | 14/01/26                | 20.68                       | 4.76                                      |
| Monday         | 14/01/27                | 20.68                       | 5.49                                      |
| Tuesday        | 14/01/28                | 13.18                       | 3.11                                      |
| Wednesday      | 14/01/29                | 23.61                       | 1.83                                      |
| Thursday       | 14/01/30                | 34.07                       | 14.65                                     |
| Friday         | 14/01/31                | 62.24                       | 32.77                                     |
| Saturday       | 14/02/01                | 50.10                       | 36.79                                     |
| Sunday         | 14/02/02                | 40.94                       | 7.38                                      |
| Monday         | 14/02/03                | 5.31                        | 5.31                                      |
| Tuesday        | 14/02/04                | 24.71                       | 6.04                                      |
| Wednesday      | 14/02/05                | 16.10                       | 6.64                                      |
| Average during | reporting period        | 27.21                       | 9.66                                      |
| Average during | calendar year (to date) | 21.55                       | 9.71                                      |

 $\textbf{2.13.7.2.} Birżebbuġa-PM_{10} concentrations after subtracting Saharan dust contribution$ 


Table 37: PM<sub>10</sub> adjusted values for Birżebbuġa station – Report 12





2.13.7.3. Marsaxlokk – PM<sub>10</sub> concentration after substracting Saharan dust contribution

Figure 54: Marsaxlokk –  $PM_{10}$  concentrations after subtracting Saharan dust contribution



2.13.7.4. Birżebbuġa – PM<sub>10</sub> concentration after substracting Saharan dust contribution

Figure 55: Birżebbuga – PM<sub>10</sub> concentrations after subtracting Saharan dust contribution



## 2.14. Report 13

The data period of this report is between the 7<sup>th</sup> and the 17<sup>th</sup> of February 2014 for an effective duration of 11 sampling days.

The results of this monitoring period are given in the next paragraphs, which are first presented in tabular format in the following order:

- 1. Marsaxlokk station: PM<sub>10</sub> & PM<sub>2.5</sub>;
- 2. Birżebbuġa station: PM<sub>10</sub> & PM<sub>2.5</sub>;

Then, a series of significant plot comparisons are reported:

- PM<sub>10</sub> vs PM<sub>2.5</sub> at Marsaxlokk station;
- PM<sub>10</sub> vs PM<sub>2.5</sub> at Birżebbuġa station;
- PM<sub>10</sub> vs PM<sub>10</sub>;
- PM<sub>2.5</sub> vs PM<sub>2.5</sub>.



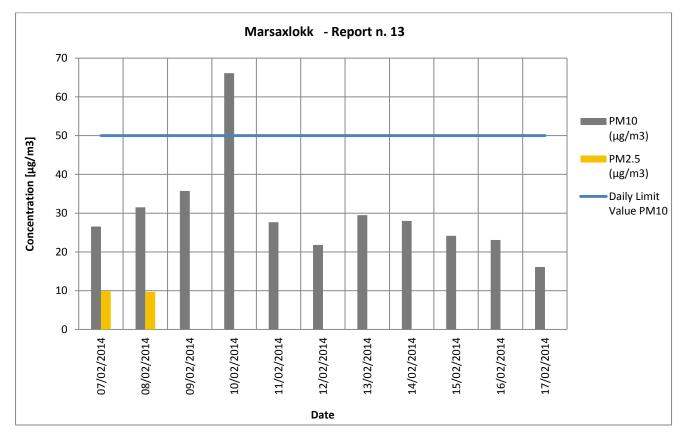
| Day                                    | Date     | ΡΜ <sub>10</sub><br>(μg/m <sup>3</sup> ) | ΡΜ <sub>2.5</sub><br>(μg/m³) |
|----------------------------------------|----------|------------------------------------------|------------------------------|
| Friday                                 | 14/02/07 | 26.54                                    | 9.89                         |
| Saturday                               | 14/02/08 | 31.50                                    | 9.71                         |
| Sunday                                 | 14/02/09 | 35.72                                    | N.V. <sup>18</sup>           |
| Monday                                 | 14/02/10 | 66.12                                    | N.V.                         |
| Tuesday                                | 14/02/11 | 27.65                                    | N.V.                         |
| Wednesday                              | 14/02/12 | 21.79                                    | N.V.                         |
| Thursday                               | 14/02/13 | 29.48                                    | N.V.                         |
| Friday                                 | 14/02/14 | 28.02                                    | N.V.                         |
| Saturday                               | 14/02/15 | 24.18                                    | N.V.                         |
| Sunday                                 | 14/02/16 | 23.07                                    | N.V.                         |
| Monday                                 | 14/02/17 | 16.12                                    | N.V.                         |
| Average during reporting period        |          | 30.02                                    | 9.80                         |
| Average during calendar year (to date) |          | 29.96                                    | 11.58                        |

2.14.1. Marsaxlokk - PM<sub>10</sub> and PM<sub>2.5</sub>

Table 38:  $PM_{10}$  and  $PM_{2.5}$  data for Marsaxlokk station – Report 13

 $<sup>^{18}</sup>$  Non valid data due to power interruption. The same reason applicable to the rest of Non Valid data for PM2.5

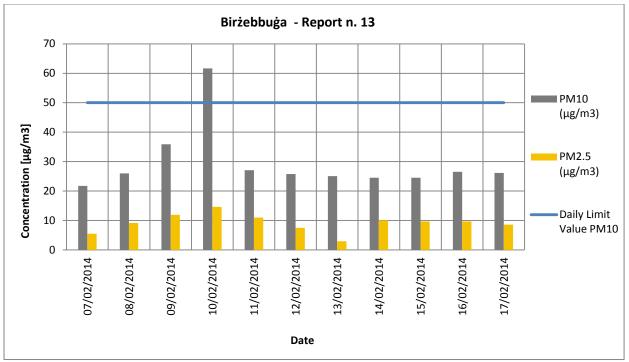



膨

| Day                             | Date                   | ΡΜ <sub>10</sub><br>(μg/m <sup>3</sup> ) | ΡΜ <sub>2.5</sub><br>(μg/m³) |
|---------------------------------|------------------------|------------------------------------------|------------------------------|
| Friday                          | 14/02/07               | 21.78                                    | 5.49                         |
| Saturday                        | 14/02/08               | 25.99                                    | 9.15                         |
| Sunday                          | 14/02/09               | 35.87                                    | 11.90                        |
| Monday                          | 14/02/10               | 61.67                                    | 14.64                        |
| Tuesday                         | 14/02/11               | 27.09                                    | 10.98                        |
| Wednesday                       | 14/02/12               | 25.80                                    | 7.50                         |
| Thursday                        | 14/02/13               | 25.07                                    | 2.93                         |
| Friday                          | 14/02/14               | 24.52                                    | 10.06                        |
| Saturday                        | 14/02/15               | 24.52                                    | 9.70                         |
| Sunday                          | 14/02/16               | 26.54                                    | 9.70                         |
| Monday                          | 14/02/17               | 26.17                                    | 8.60                         |
| Average during reporting period |                        | 29.55                                    | 9.15                         |
| Average during ca               | llendar year (to date) | 26.76                                    | 9.67                         |

# 2.14.2. Birżebbuġa - PM<sub>10</sub> and PM<sub>2.5</sub>

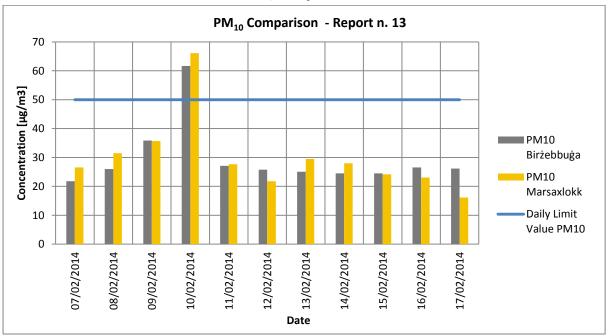
Table 39:  $\text{PM}_{10}$  and  $\text{PM}_{2.5}$  data for Birżebbuġa station – Report 13






2.14.3. Marsaxlokk – PM<sub>10</sub>vsPM<sub>2.5</sub> histogram

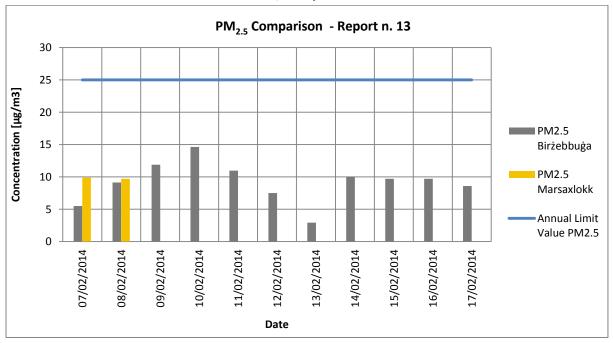
Figure 56: Marsaxlokk - PM<sub>10</sub>vsPM<sub>2.5</sub> histogram plot – Report 13






2.14.4. Birżebbuġa – PM<sub>10</sub>vsPM<sub>2.5</sub> histogram

Figure 57: Birżebbuġa - PM<sub>10</sub>vsPM<sub>2.5</sub> histogram plot – Report 13






2.14.5. PM<sub>10</sub> comparison

Figure 58: PM<sub>10</sub> comparison - histogram plot – Report 13





2.14.6. PM<sub>2.5</sub> comparison

Figure 59: PM<sub>2.5</sub> comparison - histogram plot – Report 13



## 2.14.7. Quantification of African dust

The quantification of African dust has been determined only when exceedances of the daily limit value for  $PM_{10}$  were found. The method reported in paragraph 1.4 was applied, taking the data from the Għarb station (Note: the data from the Għarb station is still raw at this stage i.e. unverified data; should the verified data be different, revisions will be carried out), the following African dust loads were determined:

| Days affected by African dust episodes | African dust load [µg/m³] |
|----------------------------------------|---------------------------|
| 2014/02/10                             | 9.25                      |

Table 40: Determination of the African dust load

By subtracting the African dust load from the  $PM_{10}$  concentrations recorded in Marsaxlokk and Birżebbuġa, one can determine when the exceedances are due to natural (adjusted value <50 µg/m<sup>3</sup>) or anthropogenic (adjusted value >50 µg/m<sup>3</sup>) origin.

On the  $10^{th}$  February, the calculated African dust was 9.25 µg/m<sup>3</sup>. After adjusting the values, the PM<sub>10</sub> concentrations at Marsaxlokk and Birżebbuġa on the  $10^{th}$  February were still above the daily limit value. Based on this, and on the analysis performed in section 2.23 it was assumed that the final PM<sub>10</sub> concentrations registered on Marsaxlokk were affected by Saharan dust episodes.

| Data       | Adjusted value [µg/m <sup>3</sup> ] |            | Source                |                       |
|------------|-------------------------------------|------------|-----------------------|-----------------------|
|            | Marsaxlokk                          | Birżebbuġa | Marsaxlokk            | Birżebbuġa            |
| 2014/02/10 | 56.87                               | 52.42      | Natural/Anthropogenic | Natural/Anthropogenic |

Table 41: Determination of the source for PM<sub>10</sub> exceedances



#### The following table reports the PM<sub>10</sub> concentrations after subtracting Saharan dust contribution:

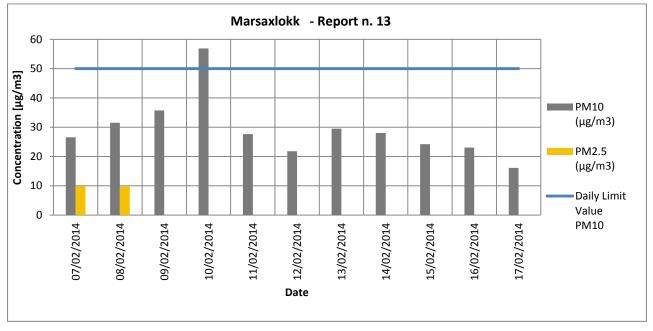
| Day                             | Date                    | ΡΜ <sub>10</sub><br>(μg/m³) | ΡΜ <sub>2.5</sub><br>(μg/m <sup>3</sup> ) |
|---------------------------------|-------------------------|-----------------------------|-------------------------------------------|
| Friday                          | 14/02/07                | 26.54                       | 9.89                                      |
| Saturday                        | 14/02/08                | 31.50                       | 9.71                                      |
| Sunday                          | 14/02/09                | 35.72                       | N.V. <sup>19</sup>                        |
| Monday                          | 14/02/10                | 56.87                       | N.V.                                      |
| Tuesday                         | 14/02/11                | 27.65                       | N.V.                                      |
| Wednesday                       | 14/02/12                | 21.79                       | N.V.                                      |
| Thursday                        | 14/02/13                | 29.48                       | N.V.                                      |
| Friday                          | 14/02/14                | 28.02                       | N.V.                                      |
| Saturday                        | 14/02/15                | 24.18                       | N.V.                                      |
| Sunday                          | 14/02/16                | 23.07                       | N.V.                                      |
| Monday                          | 14/02/17                | 16.12                       | N.V.                                      |
| Average during reporting period |                         | 29.18                       | 9.80                                      |
| Average during                  | calendar year (to date) | 26.59                       | 11.58                                     |

2.14.7.1. Marsaxlokk PM<sub>10</sub>concentrations after subtracting Saharan dust contribution

Table 42: PM<sub>10</sub> adjusted values for Marsaxlokk station – Report 13

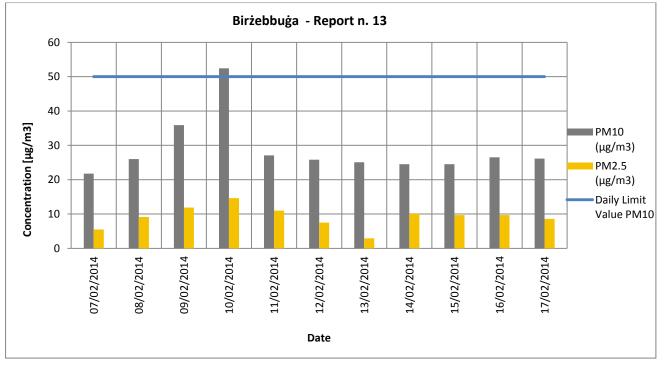
<sup>19</sup> Non valid data due to power interruption. The same reason applicable to the rest of Non Valid data for PM2.5




膨

| Day                             | Date                    | ΡΜ <sub>10</sub><br>(μg/m³) | ΡΜ <sub>2.5</sub><br>(μg/m <sup>3</sup> ) |
|---------------------------------|-------------------------|-----------------------------|-------------------------------------------|
| Friday                          | 14/02/07                | 21.78                       | 5.49                                      |
| Saturday                        | 14/02/08                | 25.99                       | 9.15                                      |
| Sunday                          | 14/02/09                | 35.87                       | 11.90                                     |
| Monday                          | 14/02/10                | 52.42                       | 14.64                                     |
| Tuesday                         | 14/02/11                | 27.09                       | 10.98                                     |
| Wednesday                       | 14/02/12                | 25.80                       | 7.50                                      |
| Thursday                        | 14/02/13                | 25.07                       | 2.93                                      |
| Friday                          | 14/02/14                | 24.52                       | 10.06                                     |
| Saturday                        | 14/02/15                | 24.52                       | 9.70                                      |
| Sunday                          | 14/02/16                | 26.54                       | 9.70                                      |
| Monday                          | 14/02/17                | 26.17                       | 8.60                                      |
| Average during reporting period |                         | 28.71                       | 9.15                                      |
|                                 | calendar year (to date) | 22.27                       | 9.67                                      |

2.14.7.2. Birżebbuġa-PM<sub>10</sub>concentrationsafter subtracting Saharan dust contribution


Table 43: PM<sub>10</sub> adjusted values for Birżebbuġa station – Report 13





2.14.7.3. Marsaxlokk – PM<sub>10</sub> concentration after substracting Saharan dust contribution

Figure 60: Marsaxlokk – PM<sub>10</sub> concentrations after subtracting Saharan dust contribution



2.14.7.4. Birżebbuġa – PM<sub>10</sub> concentration after substracting Saharan dust contribution

Figure 61: Birżebbuga –  $PM_{10}$  concentrations after subtracting Saharan dust contribution



## 2.15. Report 14

The data period of this report is between the 18<sup>th</sup> February and the 4<sup>th</sup> March 2014 for an effective duration of 15 sampling days.

The results of this monitoring period are given in the next paragraphs, which are first presented in tabular format in the following order:

- 1. Marsaxlokk station: PM<sub>10</sub> & PM<sub>2.5</sub>;
- 2. Birżebbuġa station: PM<sub>10</sub> & PM<sub>2.5</sub>;

Then, a series of significant plot comparisons are reported:

- PM<sub>10</sub> vs PM<sub>2.5</sub> at Marsaxlokk station;
- PM<sub>10</sub> vs PM<sub>2.5</sub> at Birżebbuġa station;
- PM<sub>10</sub> vs PM<sub>10</sub>;
- PM<sub>2.5</sub> vs PM<sub>2.5</sub>;



| 2.15.1.             | Marsaxlokk - PM <sub>10</sub> and PM <sub>2.5</sub> |                                       |                                        |  |  |  |
|---------------------|-----------------------------------------------------|---------------------------------------|----------------------------------------|--|--|--|
| Day                 | Date                                                | PM <sub>10</sub> (μg/m <sup>3</sup> ) | PM <sub>2.5</sub> (μg/m <sup>3</sup> ) |  |  |  |
| Tuesday             | 14/02/18                                            | N.A. <sup>20</sup>                    | N.A.                                   |  |  |  |
| Wednesday           | 14/02/19                                            | N.A.                                  | N.A.                                   |  |  |  |
| Thursday            | 14/02/20                                            | 53.29                                 | 16.86                                  |  |  |  |
| Friday              | 14/02/21                                            | 46.71                                 | 15.94                                  |  |  |  |
| Saturday            | 14/02/22                                            | 35.04                                 | 13.74                                  |  |  |  |
| Sunday              | 14/02/23                                            | 49.64                                 | 12.64                                  |  |  |  |
| Monday              | 14/02/24                                            | 27.19                                 | 10.45                                  |  |  |  |
| Tuesday             | 14/02/25                                            | 29.93                                 | 12.46                                  |  |  |  |
| Wednesday           | 14/02/26                                            | 29.20                                 | 11.00                                  |  |  |  |
| Thursday            | 14/02/27                                            | 16.24                                 | 8.25                                   |  |  |  |
| Friday              | 14/02/28                                            | 17.71                                 | 9.16                                   |  |  |  |
| Saturday            | 14/03/01                                            | 15.69                                 | 15.39                                  |  |  |  |
| Sunday              | 14/03/02                                            | 18.43                                 | 9.89                                   |  |  |  |
| Monday              | 14/03/03                                            | 15.33                                 | 7.51                                   |  |  |  |
| Tuesday             | 14/03/04                                            | 22.26                                 | 8.06                                   |  |  |  |
| Average during repo | rting period                                        | 28.97                                 | 11.64                                  |  |  |  |
| Average during cale | ndar year (to date)                                 | 26.79                                 | 11.58                                  |  |  |  |

2.15.1. Marsaxlokk - PM<sub>10</sub> and PM<sub>2.5</sub>

Table 44:  $\mathsf{PM}_{10}$  and  $\mathsf{PM}_{2.5}$  data for Marsaxlokk station – Report 14

 $^{20}$ Non Available due to maintenance operations carried out on the instrument. Same reason applicable to the rest of the N.A. data



₿

| 2.13.2.              | Bilzebbuga - Pivi <sub>10</sub> allu Pivi <sub>2.5</sub> |                                       |                                        |  |  |
|----------------------|----------------------------------------------------------|---------------------------------------|----------------------------------------|--|--|
| Day                  | Date                                                     | PM <sub>10</sub> (μg/m <sup>3</sup> ) | PM <sub>2.5</sub> (μg/m <sup>3</sup> ) |  |  |
| Tuesday              | 14/02/18                                                 | N.A. <sup>21</sup>                    | N.A.                                   |  |  |
| Wednesday            | 14/02/19                                                 | N.A.                                  | N.A.                                   |  |  |
| Thursday             | 14/02/20                                                 | 58.38                                 | 21.42                                  |  |  |
| Friday               | 14/02/21                                                 | 53.44                                 | 16.11                                  |  |  |
| Saturday             | 14/02/22                                                 | 32.76                                 | 12.45                                  |  |  |
| Sunday               | 14/02/23                                                 | 26.35                                 | 12.45                                  |  |  |
| Monday               | 14/02/24                                                 | 8.42                                  | 8.24                                   |  |  |
| Tuesday              | 14/02/25                                                 | 21.96                                 | 8.42                                   |  |  |
| Wednesday            | 14/02/26                                                 | 18.49                                 | 8.60                                   |  |  |
| Thursday             | 14/02/27                                                 | 18.12                                 | 6.04                                   |  |  |
| Friday               | 14/02/28                                                 | 16.10                                 | 10.07                                  |  |  |
| Saturday             | 14/03/01                                                 | 23.98                                 | 13.73                                  |  |  |
| Sunday               | 14/03/02                                                 | 17.02                                 | 6.22                                   |  |  |
| Monday               | 14/03/03                                                 | 13.73                                 | 4.94                                   |  |  |
| Tuesday              | 14/03/04                                                 | 19.77                                 | 6.96                                   |  |  |
| Average during repo  | rting period                                             | 27.80                                 | 11.75                                  |  |  |
| Average during calen | dar year (to date)                                       | 22.59                                 | 9.73                                   |  |  |
|                      |                                                          |                                       |                                        |  |  |

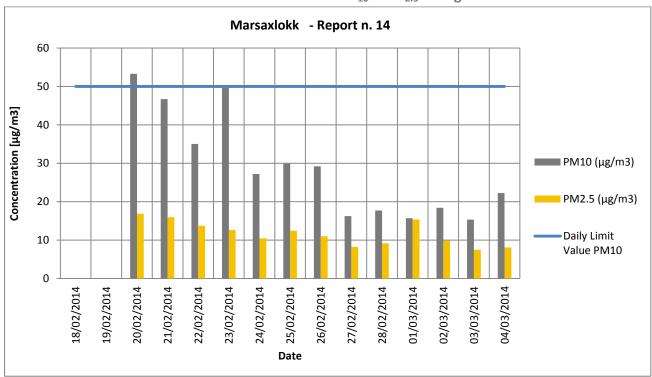
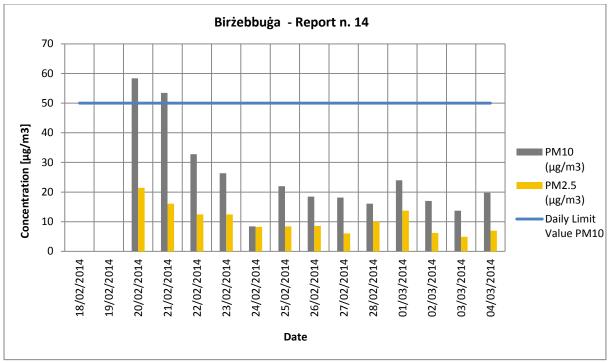

2.15.2. Birżebbuga - PM<sub>10</sub> and PM<sub>2.5</sub>

Table 45: PM<sub>10</sub> and PM<sub>2.5</sub> data for Birżebbuga station – Report 14

<sup>&</sup>lt;sup>21</sup>Non Available due to maintenance operations carried out on the instrument. Same reason applicable to the rest of the N.A. data

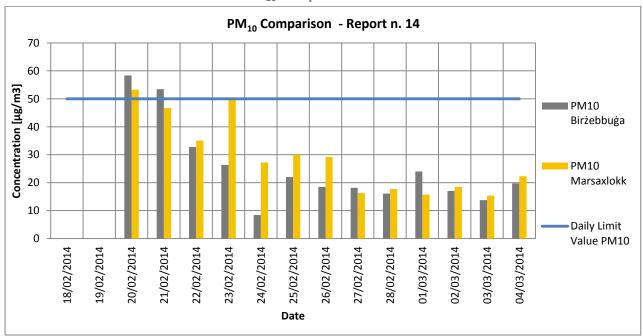



ŧ



2.15.3. Marsaxlokk – PM<sub>10</sub>vsPM<sub>2.5</sub> histogram

Figure 62: Marsaxlokk - PM<sub>10</sub>vsPM<sub>2.5</sub> histogram plot – Report 14






2.15.4. Birżebbuġa – PM<sub>10</sub>vsPM<sub>2.5</sub> histogram

Figure 63: Birżebbuga - PM<sub>10</sub>vsPM<sub>2.5</sub> histogram plot – Report 14





2.15.5. PM<sub>10</sub> comparison

Figure 64: PM<sub>10</sub> comparison - histogram plot – Report 14



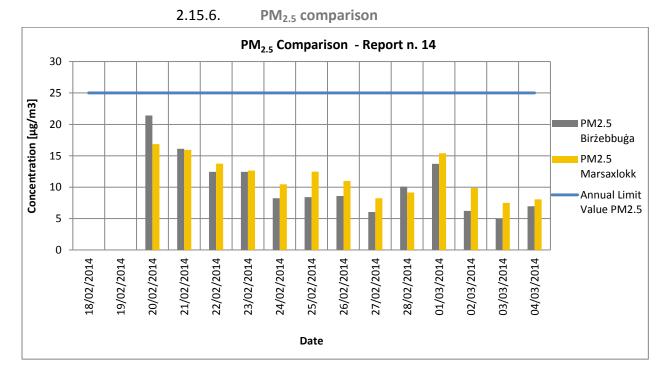



Figure 65: PM<sub>2.5</sub> comparison - histogram plot – Report 14



## 2.15.7. Quantification of African dust

The quantification of African dust has been determined only when exceedances of the daily limit value for  $PM_{10}$  were found. The method reported in paragraph 1.4 was applied, taking the data from the Għarb station (Note: the data from the Għarb station is still raw at this stage i.e. unverified data; should the verified data be different, revisions will be carried out), the following African dust loads were determined:

| Days affected by African dust episodes | African dust load [µg/m³] |
|----------------------------------------|---------------------------|
| 2014/02/20                             | 4.36                      |
| 2014/02/21                             | 4.36                      |

Table 46: Determination of the African dust load

By subtracting the African dust load from the  $PM_{10}$  concentrations recorded in Marsaxlokk and Birżebbuġa, one can determine when the exceedances are due to natural (adjusted value <50  $\mu$ g/m<sup>3</sup>) or anthropogenic (adjusted value >50  $\mu$ g/m<sup>3</sup>) origin.

On the 20<sup>th</sup> February, the calculated African dust was 4.36  $\mu$ g/m<sup>3</sup>. As the data from the Għarb station was not available for the 21<sup>st</sup> February, the same African dust load of the previous day was taken into consideration. After adjusting the values, the PM<sub>10</sub> concentrations at Marsaxlokk on the 20<sup>th</sup> February and in Birżebbuġa on the 21<sup>st</sup> February, were below the daily limit value. Based on this, and on the analysis performed in section 2.15.7, it was assumed that final PM<sub>10</sub> concentrations registered were affected by Saharan dust episodes.

In Birżebbuġa on the  $20^{th}$  February, the PM<sub>10</sub> concentration was still above the daily limit value after adjusting the values. Nevetherless, based on the analysis performed in section **Error! Reference source ot found.** and the instrinsict uncertainty of the measuring instruments, it was concluded that the final values could be attributed to natural sources as well.

| Data       | Adjusted va | lue [µg/m³] | Source     |            |  |
|------------|-------------|-------------|------------|------------|--|
|            | Marsaxlokk  | Birżebbuġa  | Marsaxlokk | Birżebbuġa |  |
| 2014/02/20 | 48.93       | 53.64       | Natural    | Natural    |  |
| 2014/02/21 |             | 49.08       |            | Natural    |  |

Table 47: Determination of the source for PM<sub>10</sub> exceedances



#### The following table reports the PM<sub>10</sub> concentration after subtracting Saharan dust contribution:

| Day                | Date                 | PM <sub>10</sub> (μg/m <sup>3</sup> ) | PM <sub>2.5</sub> (μg/m <sup>3</sup> ) |  |
|--------------------|----------------------|---------------------------------------|----------------------------------------|--|
| Tuesday            | 14/02/18             | N.A. <sup>22</sup>                    | N.A.                                   |  |
| Wednesday          | 14/02/19             | N.A.                                  | N.A.                                   |  |
| Thursday           | 14/02/20             | 48.93                                 | 16.86                                  |  |
| Friday             | 14/02/21             | 46.71                                 | 15.94                                  |  |
| Saturday           | 14/02/22             | 35.04                                 | 13.74                                  |  |
| Sunday             | 14/02/23             | 49.64                                 | 12.64                                  |  |
| Monday             | 14/02/24             | 27.19                                 | 10.45                                  |  |
| Tuesday            | 14/02/25             | 29.93                                 | 12.46                                  |  |
| Wednesday          | 14/02/26             | 29.20                                 | 11.00                                  |  |
| Thursday           | 14/02/27             | 16.24                                 | 8.25                                   |  |
| Friday             | 14/02/28             | 17.71                                 | 9.16                                   |  |
| Saturday           | Saturday 14/03/01    |                                       | 15.39                                  |  |
| Sunday             | 14/03/02             | 18.43                                 | 9.89                                   |  |
| Monday             | 14/03/03             | 15.33                                 | 7.51                                   |  |
| Tuesday            | 14/03/04             | 22.26                                 | 8.06                                   |  |
| Average during rep | oorting period       | 28.64                                 | 11.64                                  |  |
| Average during cal | endar year (to date) | 26.76                                 | 11.58                                  |  |

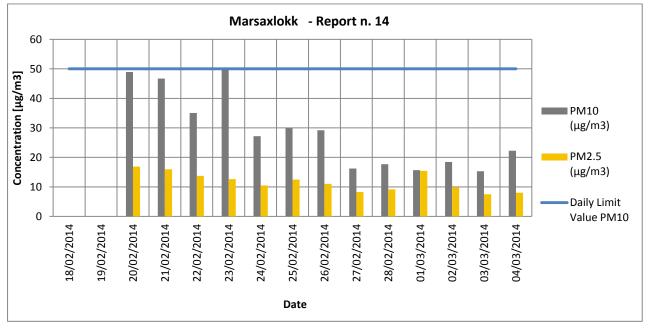
**2.15.7.1.** Marsaxlokk  $PM_{10}$  concentration after subtracting Saharan dust contribution

Table 48:  $PM_{10}$  adjusted values for Marsaxlokk station – Report 14

<sup>&</sup>lt;sup>22</sup>Non Available due to maintenance operations carried out on the instrument. Same reason applicable to the rest of the N.A. data

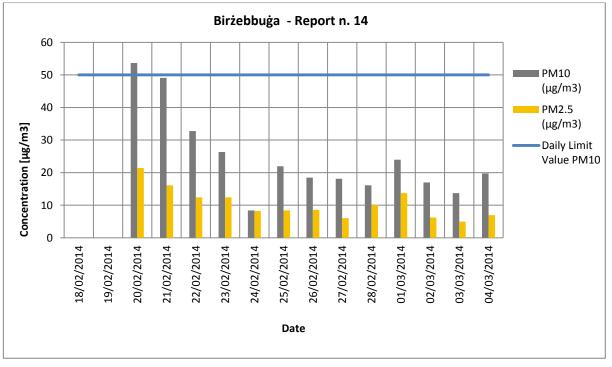


膨


| Day                 | Date                 | PM <sub>10</sub> (μg/m <sup>3</sup> ) | PM <sub>2.5</sub> (μg/m <sup>3</sup> ) |  |
|---------------------|----------------------|---------------------------------------|----------------------------------------|--|
| Tuesday             | 14/02/18             | N.A. <sup>23</sup>                    | N.A.                                   |  |
| Wednesday           | 14/02/19             | N.A.                                  | N.A.                                   |  |
| Thursday            | 14/02/20             | 53.64                                 | 21.42                                  |  |
| Friday              | 14/02/21             | 49.08                                 | 16.11                                  |  |
| Saturday            | 14/02/22             | 32.76                                 | 12.45                                  |  |
| Sunday              | 14/02/23             | 26.35                                 | 12.45                                  |  |
| Monday              | 14/02/24             | 8.42                                  | 8.24                                   |  |
| Tuesday             | 14/02/25             | 21.96                                 | 8.42                                   |  |
| Wednesday           | 14/02/26             | 18.49                                 | 8.60                                   |  |
| Thursday            | 14/02/27             | 18.12                                 | 6.04                                   |  |
| Friday              | 14/02/28             | 16.10                                 | 10.07                                  |  |
| Saturday            | 14/03/01             | 23.98                                 | 13.73                                  |  |
| Sunday              | 14/03/02             | 17.02                                 | 6.22                                   |  |
| Monday              | 14/03/03             | 13.73                                 | 4.94                                   |  |
| Tuesday             | 14/03/04             | 19.77                                 | 6.96                                   |  |
| Average during rep  | orting period        | 26.89                                 | 11.75                                  |  |
| Average during cale | endar year (to date) | 22.51                                 | 9.73                                   |  |

2.15.7.2. Birżebbuġa-PM $_{10}$  concentration after subtracting Saharan dust contribution

Table 49: PM<sub>10</sub> adjusted values for Birżebbuġa station – Report 14


<sup>23</sup>Non Available due to maintenance operations carried out on the instrument. Same reason applicable to the rest of the N.A. data





2.15.7.3. Marsaxlokk – PM<sub>10</sub> concentration after substracting Saharan dust contribution

Figure 66: Marsaxlokk – PM<sub>10</sub> concentrations after subtracting Saharan dust contribution



2.15.7.4. Birżebbuġa – PM<sub>10</sub> concentration after substracting Saharan dust contribution

Figure 67: Birżebbuga – PM<sub>10</sub> concentrations after subtracting Saharan dust contribution



### 2.16. Metal Analysis

Metal analysis followed the procedures described in earlier sections. The limit values for Arsenic, Cadmium, Nickel and Lead listed in the table below are annual limit values according to the L.N. 478/2010. Therefore the interpretation of the results achieved from the analysis of metals will be drawn up following the completion of the monitoring program which spans over one calendar year.

| 2.16.1. | February 2014 |
|---------|---------------|
|---------|---------------|

| Day Date  | Data       | Arsenic | Cadmium | Nickel | Lead  | Vanadium |
|-----------|------------|---------|---------|--------|-------|----------|
|           | Date       | ng/mc   | ng/mc   | ng/mc  | ng/mc | ng/mc    |
| Saturday  | 01/02/2014 | <1.83   | <1.83   | 9.16   | 3.66  | 12.82    |
| Sunday    | 02/02/2014 | <1.83   | <1.83   | 3.66   | 7.33  | 3.66     |
| Monday    | 03/02/2014 | <1.83   | <1.83   | 1.83   | 3.66  | 1.83     |
| Tuesday   | 04/02/2014 | <1.83   | <1.83   | 1.83   | 3.66  | 1.83     |
| Wednesday | 05/02/2014 | <1.83   | <1.83   | 1.83   | 5.49  | 3.66     |
| Thursday  | 06/02/2014 |         |         |        |       |          |
| Friday    | 07/02/2014 | <1.83   | <1.83   | 1.83   | 5.49  | 1.83     |
| Saturday  | 08/02/2014 | <1.83   | <1.83   | 3.66   | 3.66  | 5.49     |
| Sunday    | 09/02/2014 | <1.83   | <1.83   | 1.83   | 3.66  | 3.66     |
| Monday    | 10/02/2014 | <1.83   | <1.83   | 5.49   | 9.15  | 10.98    |
| Tuesday   | 11/02/2014 | <1.83   | <1.83   | 7.32   | 3.66  | 14.64    |
| Wednesday | 12/02/2014 | <1.83   | <1.83   | 1.83   | 3.66  | 1.83     |
| Thursday  | 13/02/2014 | <1.83   | <1.83   | 1.83   | 3.66  | 3.66     |
| Friday    | 14/02/2014 | <1.83   | <1.83   | 3.66   | 3.66  | 7.32     |
| Saturday  | 15/02/2014 | <1.83   | <1.83   | 3.66   | 18.30 | 5.49     |
| Sunday    | 16/02/2014 | <1.83   | <1.83   | 12.81  | 3.66  | 23.79    |
| Monday    | 17/02/2014 | <1.83   | <1.83   | 5.49   | 5.49  | 10.98    |

<sup>2.16.1.1.</sup> Marsaxlokk Metals

Table 50. Metals data for Marsaxlokk station – February



| Day       | Derte      | Arsenic | Cadmium | Nickel | Lead  | Vanadium |
|-----------|------------|---------|---------|--------|-------|----------|
|           | Date       | ng/mc   | ng/mc   | ng/mc  | ng/mc | ng/mc    |
| Saturday  | 01/02/2014 | <1.83   | <1.83   | 7.32   | 5.49  | 16.47    |
| Sunday    | 02/02/2014 | <1.83   | <1.83   | 5.53   | 1.84  | 11.07    |
| Monday    | 03/02/2014 | <1.83   | <1.83   | 1.83   | 12.81 | 1.83     |
| Tuesday   | 04/02/2014 | <1.83   | <1.83   | 3.66   | 3.66  | 1.83     |
| Wednesday | 05/02/2014 | <1.83   | <1.83   | 1.83   | 5.49  | 1.83     |
| Thursday  | 06/02/2014 |         |         |        |       |          |
| Friday    | 07/02/2014 | <1.83   | <1.83   | 3.66   | 5.49  | 5.49     |
| Saturday  | 08/02/2014 | <1.83   | <1.83   | 1.83   | 7.33  | 1.83     |
| Sunday    | 09/02/2014 | <1.83   | <1.83   | 5.49   | 14.65 | 9.16     |
| Monday    | 10/02/2014 | <1.83   | <1.83   | 3.66   | 3.66  | 7.33     |
| Tuesday   | 11/02/2014 | <1.83   | <1.83   | 1.83   | 3.66  | 1.83     |
| Wednesday | 12/02/2014 | <1.83   | <1.83   | 1.83   | 3.66  | 3.66     |
| Thursday  | 13/02/2014 | <1.83   | <1.83   | 1.83   | 5.49  | 5.49     |
| Friday    | 14/02/2014 | <1.83   | <1.83   | 3.66   | 9.16  | 9.16     |
| Saturday  | 15/02/2014 | <1.83   | <1.83   | 7.33   | 20.15 | 20.15    |
| Sunday    | 16/02/2014 | <1.83   | <1.83   | 7.32   | 3.66  | 14.65    |
| Monday    | 17/02/2014 | <1.83   | <1.83   | 1.83   | 3.66  | 1.83     |

2.16.1.2. Birżebbuġa Metals

Table 51. Metals data for Birżebbuġa station – February



# 2.17. Report 15

The data period of this report is between the 5<sup>th</sup> March and the 19<sup>th</sup> March 2014 for an effective duration of 15 sampling days.

The results of this monitoring period are given in the next paragraphs, which are first presented in tabular format in the following order:

- 1. Marsaxlokk station: PM<sub>10</sub> & PM<sub>2.5</sub>;
- 2. Birżebbuġa station: PM<sub>10</sub> & PM<sub>2.5</sub>;

Then, a series of significant plot comparisons are reported:

- PM<sub>10</sub> vs PM<sub>2.5</sub> at Marsaxlokk station;
- PM<sub>10</sub> vs PM<sub>2.5</sub> at Birżebbuġa station;
- PM<sub>10</sub> vs PM<sub>10</sub>;
- PM<sub>2.5</sub> vs PM<sub>2.5</sub>;

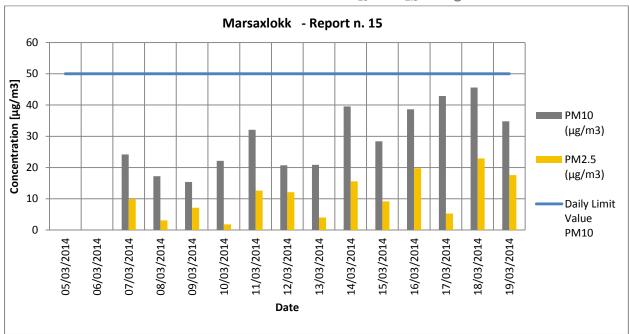


| IVIALSAXIOKK - P                | $IVIarsaxIOKK - PIVI_{10}$ and $PIVI_{2.5}$                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                     |  |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Date                            | PM <sub>10</sub> (μg/m <sup>3</sup> )                                                                                                                                                                                                                                                | PM <sub>2.5</sub> (μg/m <sup>3</sup> )                                                                                                                                                                                              |  |
| 14/03/05                        | N.A <sup>24</sup>                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                     |  |
| 14/03/06                        | N.A                                                                                                                                                                                                                                                                                  | N.A                                                                                                                                                                                                                                 |  |
| 14/03/07                        | 24.18                                                                                                                                                                                                                                                                                | 9.90                                                                                                                                                                                                                                |  |
| 14/03/08                        | 17.22                                                                                                                                                                                                                                                                                | 3.12                                                                                                                                                                                                                                |  |
| 14/03/09                        | 15.39                                                                                                                                                                                                                                                                                | 7.15                                                                                                                                                                                                                                |  |
| 14/03/10                        | 22.17                                                                                                                                                                                                                                                                                | 1.83                                                                                                                                                                                                                                |  |
| 14/03/11                        | 32.06                                                                                                                                                                                                                                                                                | 12.64                                                                                                                                                                                                                               |  |
| 14/03/12                        | 20.70                                                                                                                                                                                                                                                                                | 12.09                                                                                                                                                                                                                               |  |
| 14/03/13                        | 20.88                                                                                                                                                                                                                                                                                | 4.03                                                                                                                                                                                                                                |  |
| Friday 14/03/14                 |                                                                                                                                                                                                                                                                                      | 15.58                                                                                                                                                                                                                               |  |
| 14/03/15                        | 28.39                                                                                                                                                                                                                                                                                | 9.16                                                                                                                                                                                                                                |  |
| 14/03/16                        | 38.64                                                                                                                                                                                                                                                                                | 19.80                                                                                                                                                                                                                               |  |
| 14/03/17                        | 42.87                                                                                                                                                                                                                                                                                | 5.32                                                                                                                                                                                                                                |  |
| 14/03/18                        | 45.61                                                                                                                                                                                                                                                                                | 22.92                                                                                                                                                                                                                               |  |
| 14/03/19                        | 34.80                                                                                                                                                                                                                                                                                | 17.60                                                                                                                                                                                                                               |  |
| Average during reporting period |                                                                                                                                                                                                                                                                                      | 10.86                                                                                                                                                                                                                               |  |
| endar year (to date)            | 26.99                                                                                                                                                                                                                                                                                | 11.51                                                                                                                                                                                                                               |  |
|                                 | Date         14/03/05         14/03/06         14/03/07         14/03/07         14/03/08         14/03/10         14/03/10         14/03/11         14/03/12         14/03/13         14/03/14         14/03/15         14/03/16         14/03/17         14/03/18         14/03/19 | DatePM10 (μg/m³)14/03/05N.A2414/03/06N.A14/03/0724.1814/03/0817.2214/03/0915.3914/03/1022.1714/03/1132.0614/03/1220.7014/03/1320.8814/03/1439.5614/03/1528.3914/03/1638.6414/03/1742.8714/03/1845.6114/03/1934.80orting period29.42 |  |

2.17.1. Marsaxlokk - PM10 and PM25

Table 52:  $\mathsf{PM}_{10}$  and  $\mathsf{PM}_{2.5}$  data for Marsaxlokk station – Report 15

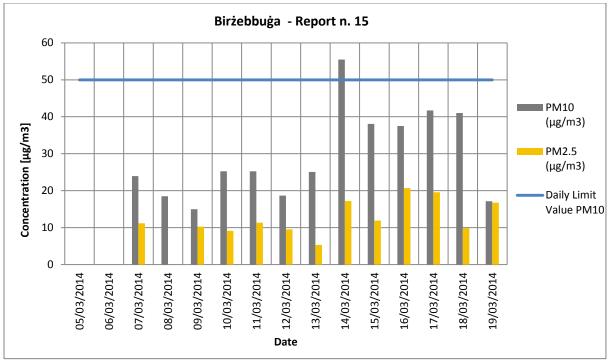
<sup>24</sup> Non Available filters broken during shipment. ambiente ingegneria ambientale e laboratori


| 2.17.2.                         | Birzebbuga - Pivi <sub>10</sub> and Pivi <sub>2.5</sub> |                                       |                                        |  |
|---------------------------------|---------------------------------------------------------|---------------------------------------|----------------------------------------|--|
| Day                             | Date                                                    | PM <sub>10</sub> (μg/m <sup>3</sup> ) | PM <sub>2.5</sub> (μg/m <sup>3</sup> ) |  |
| Wednesday                       | 14/03/05                                                | N.A <sup>25</sup>                     | N.A                                    |  |
| Thursday 14/03/06               |                                                         | N.A                                   | N.A                                    |  |
| Friday                          | 14/03/07                                                | 23.97 11.1                            |                                        |  |
| Saturday                        | 14/03/08                                                | 18.48                                 | <1.83                                  |  |
| Sunday                          | 14/03/09                                                | 15.01                                 | 10.25                                  |  |
| Monday                          | 14/03/10                                                | 25.25                                 | 9.15                                   |  |
| Tuesday                         | 14/03/11                                                | 25.26                                 | 11.35                                  |  |
| Wednesday                       | 14/03/12                                                | 18.66                                 | 9.52                                   |  |
| Thursday                        | 14/03/13                                                | 25.08                                 | 5.31                                   |  |
| Friday 14/03/14                 |                                                         | 55.47                                 | 17.21                                  |  |
| Saturday                        | 14/03/15                                                | 38.07                                 | 11.90                                  |  |
| Sunday                          | 14/03/16                                                | 37.52                                 | 20.69                                  |  |
| Monday                          | 14/03/17                                                | 41.73                                 | 19.59                                  |  |
| Tuesday                         | 14/03/18                                                | 41.00                                 | 9.88                                   |  |
| Wednesday                       | 14/03/19                                                | 17.14                                 | 16.77                                  |  |
| Average during reporting period |                                                         | 29.43                                 | 3 12.73                                |  |
| Average during caler            | ndar year (to date)                                     | 23.25                                 | 9.95                                   |  |

2.17.2. Birżebbuġa - PM<sub>10</sub> and PM<sub>2.5</sub>

Table 53:  $\text{PM}_{10}$  and  $\text{PM}_{2.5}$  data for Birżebbuġa station – Report 15

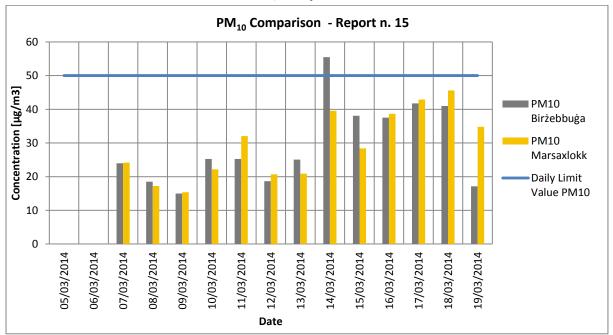
<sup>25</sup> *Non Available* filters broken during shipment.


ingegneria ambientale e laboratori



2.17.3. Marsaxlokk – PM<sub>10</sub>vsPM<sub>2.5</sub> histogram

Figure 68: Marsaxlokk - PM<sub>10</sub>vsPM<sub>2.5</sub> histogram plot – Report 15






2.17.4. Birżebbuġa – PM<sub>10</sub>vsPM<sub>2.5</sub> histogram

Figure 69: Birżebbuġa - PM<sub>10</sub>vsPM<sub>2.5</sub> histogram plot – Report 15





2.17.1. PM<sub>10</sub> comparison

Figure 70: PM<sub>10</sub> comparison - histogram plot – Report 15



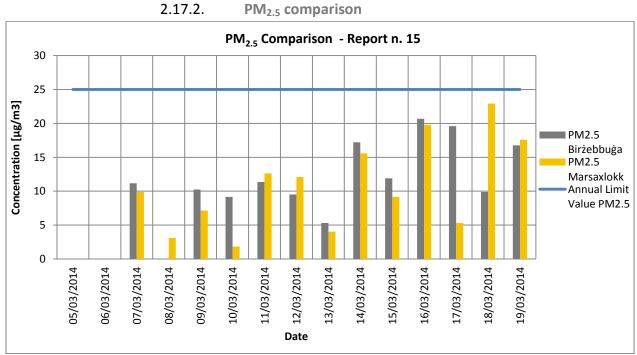



Figure 71: PM<sub>2.5</sub> comparison - histogram plot – Report 15



# 2.18. Report 16

The data period of this report is between the 20<sup>th</sup> March and the 2<sup>nd</sup> April 2014 for an effective duration of 14 sampling days.

The results of this monitoring period are given in the next paragraphs, which are first presented in tabular format in the following order:

- 1. Marsaxlokk station: PM<sub>10</sub> & PM<sub>2.5</sub>;
- 2. Birżebbuġa station: PM<sub>10</sub> & PM<sub>2.5</sub>;

Then, a series of significant plot comparisons are reported:

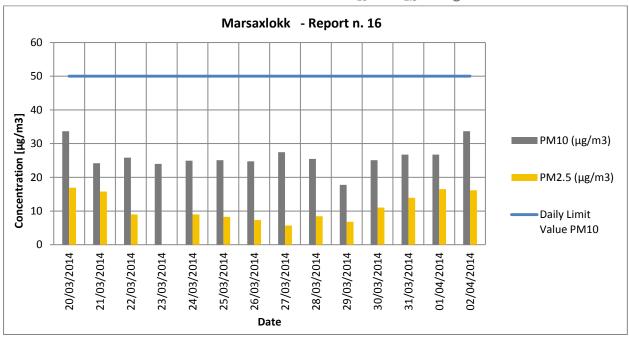
- PM<sub>10</sub> vs PM<sub>2.5</sub> at Marsaxlokk station;
- PM<sub>10</sub> vs PM<sub>2.5</sub> at Birżebbuġa station;
- PM<sub>10</sub> vs PM<sub>10</sub>;
- PM<sub>2.5</sub> vs PM<sub>2.5</sub>;



| 2.18.1.                         | IVIArsaxIOKK - P         | Marsaxlokk - PM <sub>10</sub> and PM <sub>2.5</sub> |                                        |  |  |
|---------------------------------|--------------------------|-----------------------------------------------------|----------------------------------------|--|--|
| Day                             | Date                     | PM <sub>10</sub> (μg/m <sup>3</sup> )               | PM <sub>2.5</sub> (μg/m <sup>3</sup> ) |  |  |
| Thursday                        | 14/03/20                 | 33.68                                               | 16.90                                  |  |  |
| Friday                          | 14/03/21                 | 24.18                                               | 15.77                                  |  |  |
| Saturday                        | 14/03/22                 | 25.83                                               | 8.98                                   |  |  |
| Sunday                          | 14/03/23                 | 23.99                                               | <1.83                                  |  |  |
| Monday                          | 14/03/24                 | 24.92                                               | 8.99                                   |  |  |
| Tuesday                         | 14/03/25                 | 25.09                                               | 8.25                                   |  |  |
| Wednesday                       | 14/03/26                 | 24.73                                               | 7.33                                   |  |  |
| Thursday                        | 14/03/27                 | 27.46                                               | 5.68                                   |  |  |
| Friday                          | 14/03/28                 | 25.46                                               | 8.44                                   |  |  |
| Saturday                        | 14/03/29                 | 17.77                                               | 6.78                                   |  |  |
| Sunday                          | 14/03/30                 | 25.09                                               | 11.00                                  |  |  |
| Monday                          | 14/03/31                 | 26.75                                               | 13.94                                  |  |  |
| Tuesday                         | 14/04/01                 | 26.74                                               | 16.51                                  |  |  |
| Wednesday                       | 14/04/02                 | 33.69 16.13                                         |                                        |  |  |
| Average during reporting period |                          | 26.10                                               | 11.13                                  |  |  |
| Average during cal              | endar year (to date)     | 26.92                                               | 11.48                                  |  |  |
|                                 | A surd DRA slate for RAS |                                                     |                                        |  |  |

2.18.1. Marsaxlokk - PM<sub>10</sub> and PM<sub>2.5</sub>

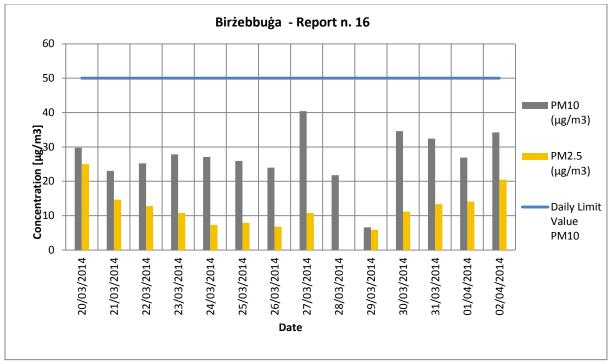
Table 54: PM<sub>10</sub> and PM<sub>2.5</sub> data for Marsaxlokk station – Report 16




| Date<br>14/03/20<br>14/03/21<br>14/03/22<br>14/03/23<br>14/03/24 | <ul> <li>PM<sub>10</sub> (μg/m<sup>3</sup>)</li> <li>29.77</li> <li>23.07</li> <li>25.26</li> <li>27.82</li> </ul>               | PM <sub>2.5</sub> (μg/m <sup>3</sup> )<br>25.01<br>14.65<br>12.81<br>10.80                                                                                                                                                                                                               |  |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 14/03/21<br>14/03/22<br>14/03/23                                 | 23.07<br>25.26<br>27.82                                                                                                          | 14.65<br>12.81                                                                                                                                                                                                                                                                           |  |
| 14/03/22<br>14/03/23                                             | 25.26                                                                                                                            | 12.81                                                                                                                                                                                                                                                                                    |  |
| 14/03/23                                                         | 27.82                                                                                                                            |                                                                                                                                                                                                                                                                                          |  |
|                                                                  |                                                                                                                                  | 10.80                                                                                                                                                                                                                                                                                    |  |
| 14/03/24                                                         |                                                                                                                                  |                                                                                                                                                                                                                                                                                          |  |
|                                                                  | 27.08                                                                                                                            | 7.32                                                                                                                                                                                                                                                                                     |  |
| 14/03/25                                                         | 25.92                                                                                                                            | 7.91                                                                                                                                                                                                                                                                                     |  |
| 14/03/26                                                         | 23.98                                                                                                                            | 6.77                                                                                                                                                                                                                                                                                     |  |
| 14/03/27                                                         | 40.44                                                                                                                            | 10.81                                                                                                                                                                                                                                                                                    |  |
| 14/03/28                                                         | 21.78                                                                                                                            | <1.83                                                                                                                                                                                                                                                                                    |  |
| 14/03/29                                                         | 6.59                                                                                                                             | 5.86                                                                                                                                                                                                                                                                                     |  |
| 14/03/30                                                         | 34.59                                                                                                                            | 11.17                                                                                                                                                                                                                                                                                    |  |
| 14/03/31                                                         | 32.40                                                                                                                            | 13.36                                                                                                                                                                                                                                                                                    |  |
| 14/04/01                                                         | 26.90                                                                                                                            | 14.09                                                                                                                                                                                                                                                                                    |  |
| 14/04/02                                                         | 34.23                                                                                                                            | 20.50                                                                                                                                                                                                                                                                                    |  |
| Average during reporting period                                  |                                                                                                                                  | 12.39                                                                                                                                                                                                                                                                                    |  |
| r year (to date)                                                 | 23.61                                                                                                                            | 10.13                                                                                                                                                                                                                                                                                    |  |
|                                                                  | 14/03/25<br>14/03/26<br>14/03/27<br>14/03/28<br>14/03/29<br>14/03/30<br>14/03/31<br>14/04/01<br>14/04/01<br>14/04/02<br>g period | 14/03/25       25.92         14/03/26       23.98         14/03/27       40.44         14/03/28       21.78         14/03/29       6.59         14/03/30       34.59         14/03/31       32.40         14/04/01       26.90         14/04/02       34.23         g period       27.13 |  |

2.18.2. Birżebbuġa - PM<sub>10</sub> and PM<sub>2.5</sub>

Table 55: PM<sub>10</sub> and PM<sub>2.5</sub> data for Birżebbuġa station – Report 16






2.18.3. Marsaxlokk – PM<sub>10</sub>vsPM<sub>2.5</sub> histogram

Figure 72: Marsaxlokk - PM<sub>10</sub>vsPM<sub>2.5</sub> histogram plot – Report 16





2.18.4. Birżebbuġa – PM<sub>10</sub>vsPM<sub>2.5</sub> histogram

Figure 73: Birżebbuġa - PM<sub>10</sub>vsPM<sub>2.5</sub> histogram plot – Report 16



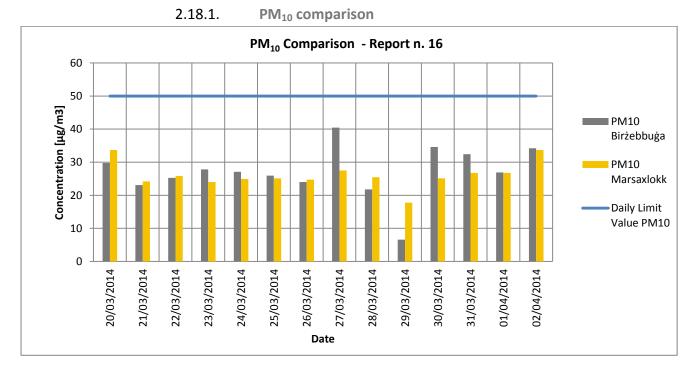
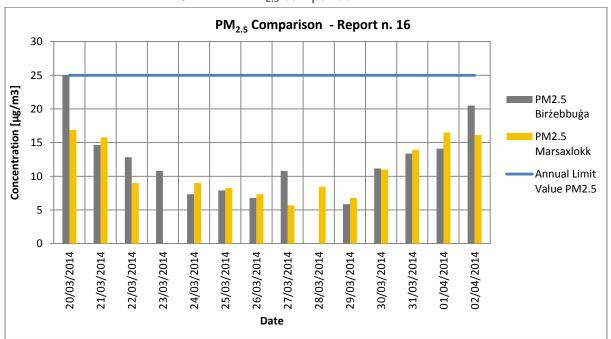




Figure 74: PM<sub>10</sub> comparison - histogram plot – Report 16





2.18.2. PM<sub>2.5</sub> comparison

Figure 75: PM<sub>2.5</sub> comparison - histogram plot – Report 16



# ANNEX A – SAHARAN DUST

# 2.19. SEPTEMBER

2.19.1. Analysis for the Identification of Saharan Dust

### Step 1: MEPA data analysis

The analysis of the air monitoring data during the period between the 27<sup>th</sup> September and the 2<sup>nd</sup> October determined the following exceedances:

- at Marsaxlokk site, exceedance of daily limit value of PM<sub>10</sub>, occurred on
  - ο September 29 daily concentration of 53.50  $\mu$ g/m<sup>3</sup> against daily limit value of 50.0  $\mu$ g/m<sup>3</sup>
  - September 30 daily concentration of 61.36  $\mu$ g/m<sup>3</sup> against daily limit value of 50.0  $\mu$ g/m<sup>3</sup>

Therefore, the days to be investigated are the: 29 and 30 of September.

For the above days, the available information from MEPA air monitoring network was related to:

- Għarb station
- Msida station
- Żejtun station
- Kordin station

The PM<sub>10</sub> daily mean values were:

- Għarb station:
  - September 29- daily concentration of 36.91 μg/m<sup>3</sup> against daily limit value of 50.0 μg/m<sup>3</sup>
  - $\circ~$  September 30 -daily concentration of 35.04  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
- Msida station:
  - $\circ~$  September 29- daily concentration of 41.08  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
  - $\circ~$  September 30 -daily concentration of 41.08  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$



- Żejtun station:
  - $\circ~$  September 29- daily concentration of 9.05  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
  - $\circ~$  September 30 -daily concentration of 10.24  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
- Kordin station
  - $\circ~$  September 29- daily concentration of 31.01  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
  - September 30 -daily concentration of 34.08  $\mu$ g/m<sup>3</sup> against daily limit value of 50.0  $\mu$ g/m<sup>3</sup>

The following table summarizes the above information:

| Date Enemalta air monitoring |            | r monitoring | MEPA air monitoring network stations |        |         |         |
|------------------------------|------------|--------------|--------------------------------------|--------|---------|---------|
|                              | Marsaxlokk | Birżebbuġa   | Għarb                                | Msida* | Kordin* | Żejtun* |
| September 29                 | 53.50      | N.V          | 36.91                                | 41.08  | 31.01   | 9.05    |
| September 30                 | 61.36      | N.V          | 35                                   | 41.08  | 34.08   | 10.24   |

Table 56: PM<sub>10</sub> measurements on the 29 and 30 September

# The following figure shows the above information:

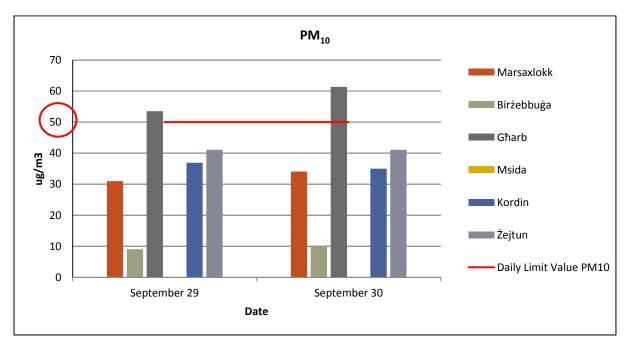



Figure 76: Air monitoring data plot on the days of exceedance





Hourly measures for the 29<sup>th</sup> and the 30<sup>th</sup> September 2013.

The mean values extracted from MEPA data base for the 29<sup>th</sup> and 30<sup>th</sup> September did not provide a conclusive clarification about the possibility of a Saharan event in those days; hence the hourly values in the Maltese fixed stations were obtained and analysed.

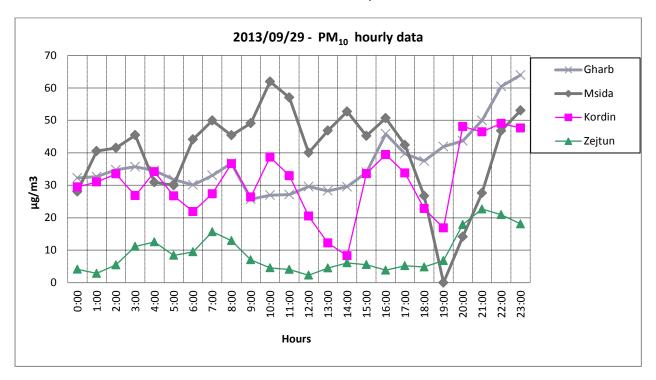



Figure 77: PM<sub>10</sub> hourly data for the 29 September

From the above figure we could assume the possibility of a Saharan event from 21:00hrs onwards on the 29th as the concentration of  $PM_{10}$  shows and accurately increase which it is not considered to correspond with a high night traffic density. This data interpretation could be supported by the daily values of the following day as in the first hours of the 30<sup>th</sup>, the  $PM_{10}$  concentrations are significantly high (85 µg/m<sup>3</sup> Msida station at 1:00 hrs).



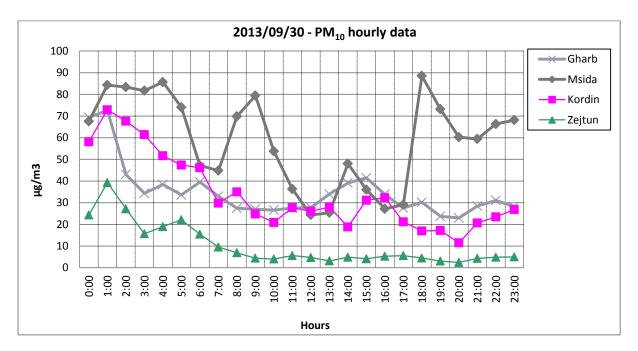



Figure 78: PM<sub>10</sub> hourly data for the 30 September

In order to confirm this hypothesis, satellite images were evaluated as well as the BSC-Dream and HYSPLIT model outputs for the 29<sup>th</sup> and 30<sup>th</sup> September.

# Step 2 – Satellite images

The exceedance in January has to be correlated with satellite imagery. The satellite images consulted were downloaded from the AERONET network which produces data available on the NASA website: http://rapidfire.sci.gsfc.nasa.gov/subsets/?subset=AERONET\_ETNA.

The belowimages represent satellite images of 250m bands for Aqua and 250m bands for Terra.

# Step 3 – Mathematical Modelling

The data available was analysed using the BSC-DREAM dust model (with concentration and deposition indicated) and HYSPLIT 4 model with a printout at heights of 100, 500 and 1500 metres above ground level, that show also mixing heights, taken over a period of 3 days prior to the day when the exceedance were recorded. BSC-DREAM dust model is helpful because it provides information not only on dust aerosols, but also because it provides the reconstruction of the wind field that is essential to better evaluate the HYSPLIT 4 model outputs. The BSC-DREAM outputs used are related to the Dust Loading (expressed in  $g/m^2$ ) and to the Lowest Level Dust Concentrations (expressed in  $\mu g/m^3$ ).



# Step 4 - Satellite data

In cases where satellite images and mathematical modelling outputs were not enough to verify whether on the identified day, Saharan dust episodes really took place, satellite data from three different instruments: the MODIS sensor and AERONET data were analysed for the identified day.

• <u>29 September</u>

### **AERONET** images

The below images represent satellite images of 250m bands for Aqua and 250m bands for Terra.



Figure 79: AERONET\_ETNA 250m \_AQUA



Figure 80: AERONET\_ETNA 250 m \_TERRA

The images above show the possible presence of a dust aerosol related to the Saharan region.



# **BSC-DREAM model**

The figure below represents the BSC-DREAM prediction of total dust, expressed in terms of the lowest model level dust concentration (in  $\mu$ g m<sup>3</sup>) and of dust load (in g m<sup>2</sup>). The dust load is in size classes between 0.1 and 10  $\mu$ m over Europe at 12:00 UTC and superimposed on the same figure are the corresponding hourly forecasted wind vectors at 3000 m height level.

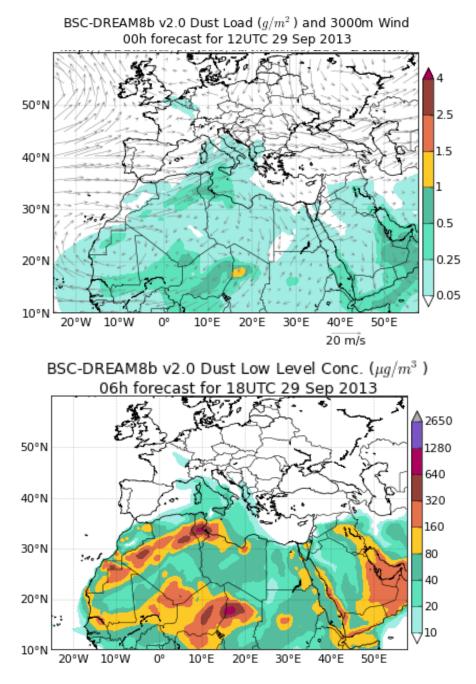



Figure 81: BSC-DREAM outputs on the 29 September

From the dust loading image it can be noted that on the 29<sup>th</sup> September, Malta was influenced by dust loading from Saharan region of medium intensity, through wind vectors that describe a wind



vortex that travelled from the North-Western side of Africa and reaching Malta and the Southern part of Italy.

The dust concentration image also shows that Malta could have been influenced by dust loading from Saharan region.

#### HYSPLIT model

The following figure shows the application of HYSPLIT on the Maltese islands on the 29<sup>th</sup> of September. The HYSPLIT output is related to 20:00 UTC, defined as the moment of maximum peak of the possible dust event.

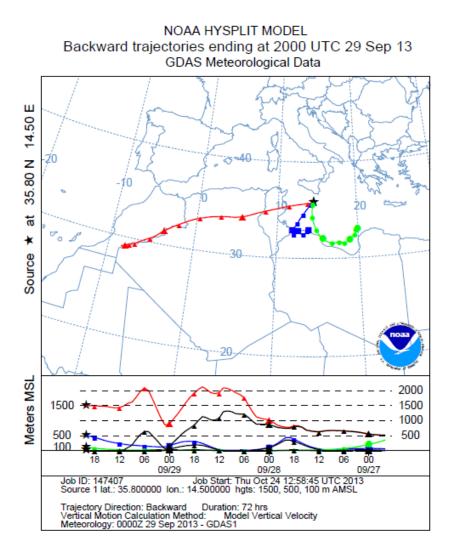



Figure 82: HYSPLIT model output on the Maltese islands on the 29 September taken over a period of 3 days

The above image confirms that the backward trajectories at 1500 high and ending over the air monitoring zone come from Saharan regions, which is in accordance to the BSC-DREAM output. The following figures show, for each backward trajectory, the variation of the parameters "Terrain



height" and "Mixed layer depth", along the path. This information allows some further assessment about the probable intensity of the event at the arriving-point of this trajectory:

- reduced distance from the backward trajectory level and the terrain height is considered to be an indicator of a higher intensity event, due to a major implication of the lower level of the atmosphere;
- the presence, along the path, of many points at which the trajectory level is above the mixed layer depth is considered an indicator of a possible decrease of the intensity of the dust aerosol, even if the trajectory being always under the mixed layer depth may be affected by higher level of dust deposition along the path, with minor intensity at the ending-point of the backward trajectory;
- a mixed layer depth higher than the ending-level of each backward trajectory is an indicator of a higher level of intensity of the event;



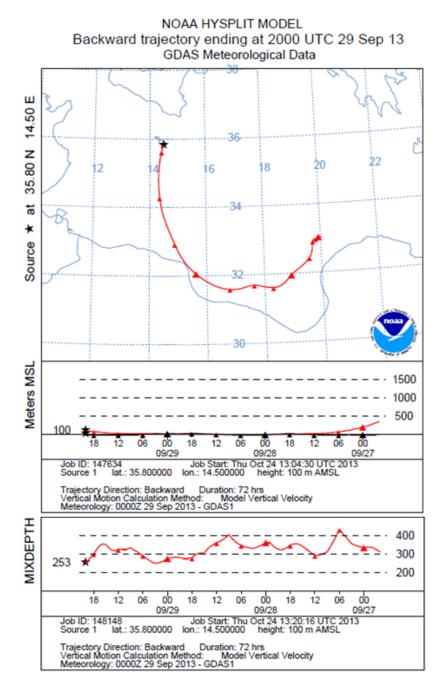



Figure 83: HYSPLIT backward trajectory at 100 m on the 29 September

The backward trajectory at 100 meters above ground level is from the Southern Mediterranean area but did not pass over Saharan regions.



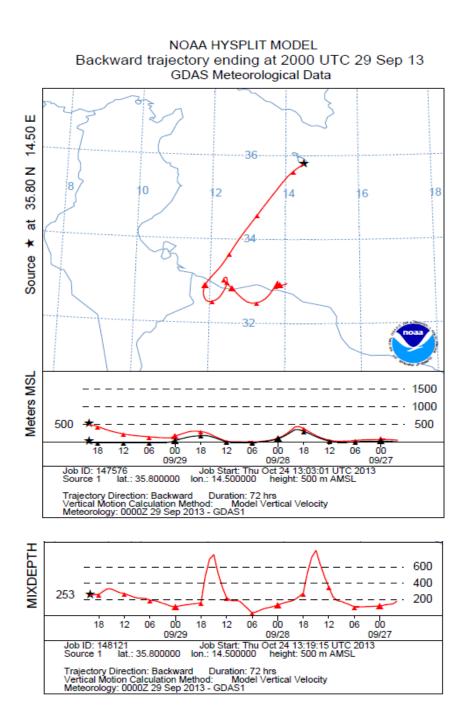
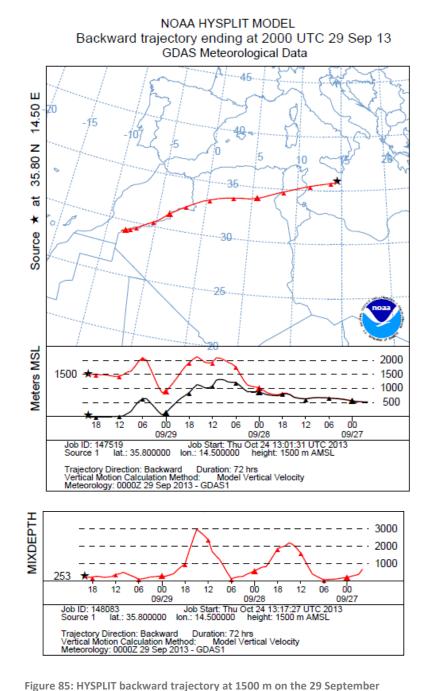
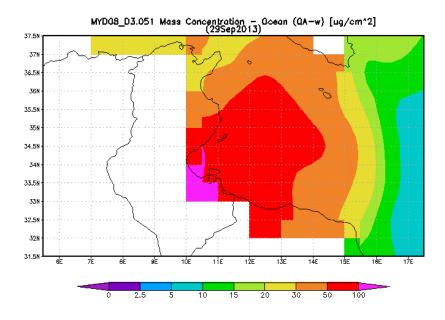




Figure 84: HYSPLIT backward trajectory at 500 m on the 29 September

The backward trajectory related to 500 meters level travelled during a short period over the North of Libya.








The above figures show that the mixed layer depth over Malta on the 29<sup>th</sup> September was 253 m, lower than the backward trajectory at 500 m and 1500 levels ending-point. The backward trajectory at 1500 m was the only one certainly coming from Saharan regions, but the high quote of its whole path and the low quote of the mixed layer depth over Malta seem not that the wind at this height does not indicated the presence of a Saharan dust episode on that day.



#### **MODIS** sensors

The MODIS data available show the absence of a dust aerosol over the Maltese islands (see the following images of the Aerosol Optical Depth and Mass concentration).







# <u>30 September</u>

#### **AERONET** images

The below images represent satellite images of 250m bands for Aqua and 250m bands for Terra.

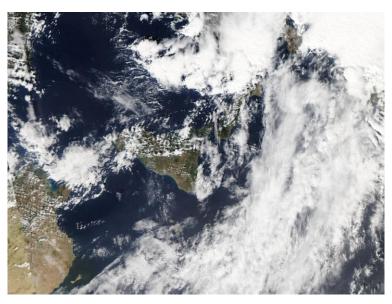
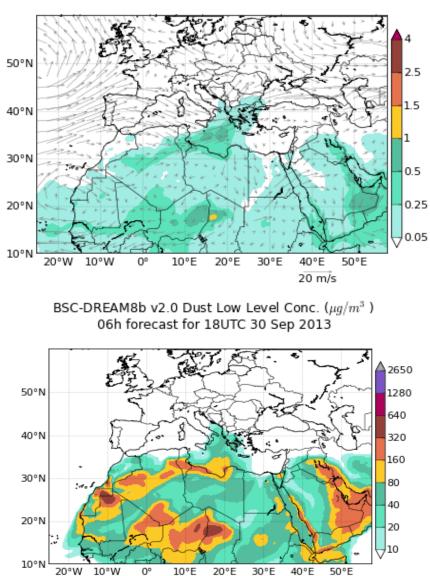



Figure 87: AERONET\_ETNA 250m \_AQUA




Figure 88: AERONET\_ETNA 250 m \_TERRA

The images above show the possible presence of a dust aerosol related to the Saharan region. In this occasion the images above do not show the clear presence of a dust aerosol related to the Saharan region.



## **BSC-DREAM model**

The figure below represents the BSC-DREAM prediction of total dust, expressed in terms of the lowest model level dust concentration (in  $\mu$ g m<sup>3</sup>) and of dust load (in g m<sup>2</sup>). The dust load is in size classes between 0.1 and 10  $\mu$ m over Europe at 12:00 UTC and superimposed on the same figure are the corresponding hourly fore casted wind vectors at 3000 m height level.



BSC-DREAM8b v2.0 Dust Load ( $g/m^2$ ) and 3000m Wind 00h forecast for 12UTC 30 Sep 2013

Figure 89: BSC-DREAM outputs on the 30 September



From the dust loading image, it can be noted that on the 30<sup>th</sup> September, Malta was as not strongly influenced by dust loading from the Saharan region as in the previous day. The image describes wind vectors which come from the West and go through Spain, reaching Malta and afterwards going up to the Turkish region. Nevertheless wind vectors which medium-low intensity coming from North-West African region also reached The Maltese islands in this day.

The following figure shows the application of HYSPLIT on the Maltese islands on the 30<sup>th</sup> of September. The HYSPLIT output is related to 00:00 UTC, defined as the moment of maximum peak of the possible dust event.

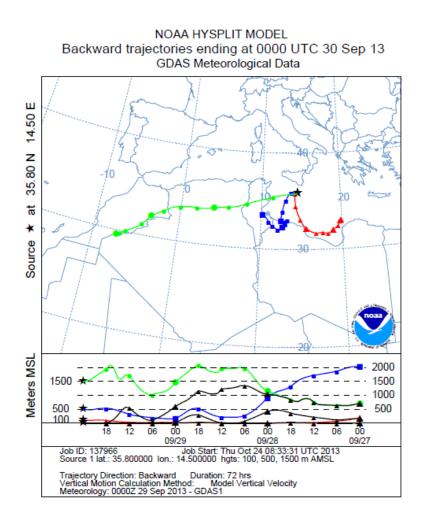



Figure 90: HYSPLIT model output on the Maltese islands on the 30 September taken over a period of 3 days

As in the 29<sup>th</sup> September, the above image confirms that the backward trajectories at 1500 high and ending over the air monitoring zone are from Southern zones and from Saharan regions, which is in accordance to the BSC-DREAM output. The similar results as from the day before are explained due to the fact that the hourly difference is only few hours. The following figures show, for each backward trajectory, the variation of the parameters "Terrain height" and "Mixed layer depth", along the path. This information allows some further assessment about the probable intensity of the event at the arriving-point of this trajectory:



- reduced distance from the backward trajectory level and the terrain height is considered to be an indicator of a higher intensity event, due to a major implication of the lower level of the atmosphere;
- the presence, along the path, of many points at which the trajectory level is above the mixed layer depth is considered an indicator of a possible decrease of the intensity of the dust aerosol, even if the trajectory being always under the mixed layer depth may be affected by higher level of dust deposition along the path, with minor intensity at the ending-point of the backward trajectory;
- a mixed layer depth higher than the ending-level of each backward trajectory is an indicator of a higher level of intensity of the event;



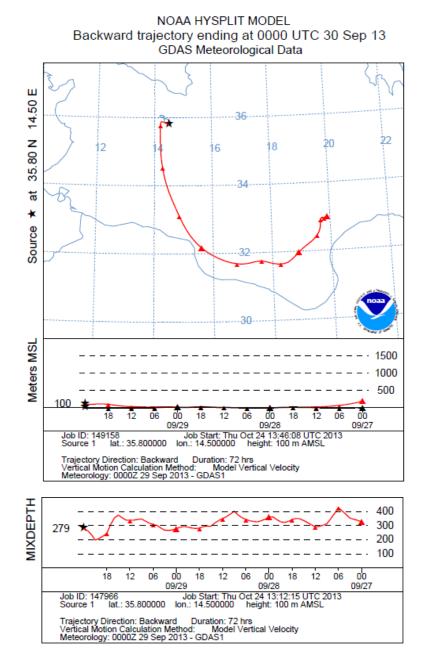



Figure 91: HYSPLIT backward trajectory at 100 m on the 30 September



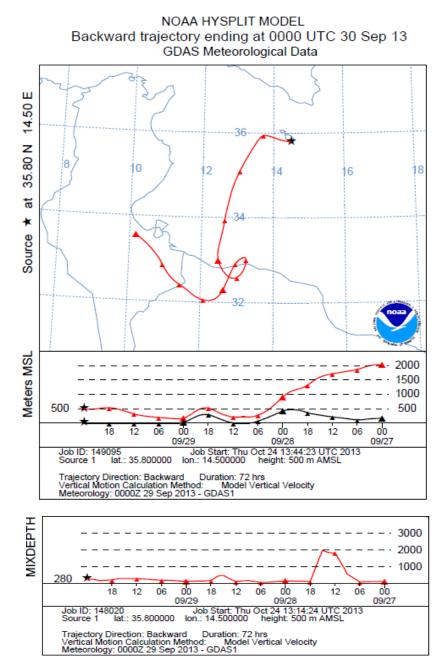



Figure 92: HYSPLIT backward trajectory at 500 m on the 30 September



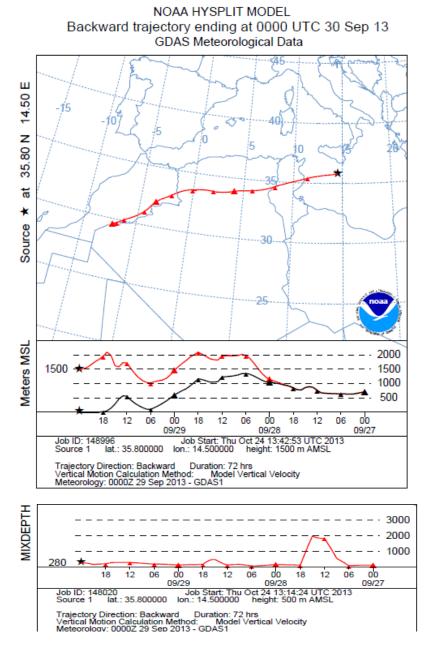
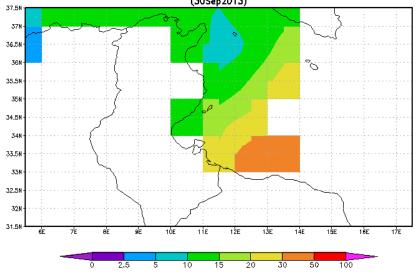



Figure 93: HYSPLIT backward trajectory at 1500 m on the 30 September


The above figures show that the mixed layer depth over Malta on 30<sup>th</sup> September was 280 m, hence lower than the backward trajectory at 500 m and 1500 levels ending-points. Therefore, the contribution of the dust aerosol from Saharan regions appears to be limited to the lower level (100 meters above ground level), which did not travelled along the Saharan regions during the period studied.



#### **MODIS** sensors

The MODIS data available show the absence of a dust aerosol over the Maltese islands (see the following images of the Aerosol Optical Depth and Mass concentration).

The MODIS data available shows a quite low value referred to the presence of dust aerosols over Malta on 30 September 2013. Both the Aerosol optical depth and the mass concentration map shows values not significantly high to confirm the presence of dust aerosol.



MYD08\_D3.051 Mass Concentration - Ocean (QA-w) [ug/cm\*2] (30Sep2013)

Figure 94: MODIS Terra and Aqua Level 3-Data on the 30 September



# **AERONET Data**

The available data, related to the Lampedusa site where the sun photometer is located and managed by ENEA (Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile, Italy), is plotted in the following figures:

• <u>29 September & 30 September</u>

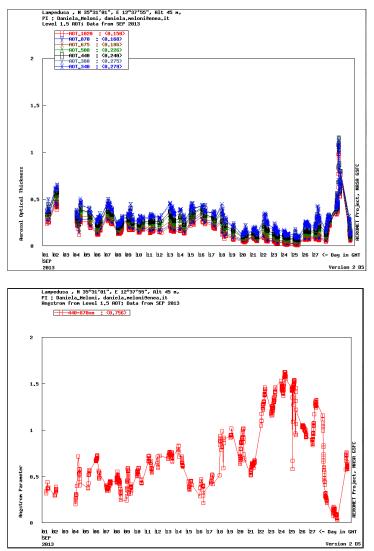



Figure 95: AERONET data from Lampedusa on September

The above images show the presence of a Saharan dust episode over Lampedusa on the latest days of September (such episode is defined by high AOT values and low Angrstrom parameter values).

This episode probably reached the Maltese Islands in the following hours which could explain the PM 10 exceedance on the 29<sup>th</sup> and on the 30<sup>th</sup> September



### Conclusions

The BSC-DREAM model outputs show a wind field between from Saharan regions (Algeria, Tunisia and Libya) toward Southern Italy and Greece, that could be in compliance with the presence of a dust aerosol over the Libyan coasts.

On the contrary, the HYSPLIT backward trajectories at the lower levels (at 100 and 500 meters above ground level) are from Aegean area and not from Saharan regions. Only the upper backward trajectory (at 1500 meter above ground level) is directly from Southern Libya.

The MODIS data available confirms the presence of medium to high mass concentration in the area on the  $29^{th}$  and  $30^{th}$  of September.

The AERONET data from Lampedusa site confirms the presence of a dust aerosol on the 29<sup>th</sup> was significantly higher than the previous days of the month.

In conclusion, the PM10-exceedance at Marsaxlokk on the 29<sup>th</sup> and 30<sup>th</sup> of September is attributed to a Saharan dust episode. The limited intensity of this episode is probably due to the fact the dust aerosol was transported by a wind vortex that didn't reach directly the Maltese islands but along a longer path with higher energy dissipations and depositions.



# 2.20. **OCTOBER**

#### 2.20.1. Analysis for the Identification of Saharan Dust

#### Step 1: MEPA data analysis

The analysis of the air monitoring data during the period between the 3<sup>rd</sup> October and the 16<sup>th</sup> October determined the following exceedances:

- At Marsaxlokk site. exceedance of daily limit value of PM10. occurred on
  - $\circ$  October 10 daily concentration of  $56.58\,\mu\text{g/m}^3$  against daily limit value of 50.0  $\mu\text{g/m}^3$
  - $\circ$  October 16 daily concentration of 52.38  $\mu$ g/m<sup>3</sup> against daily limit value of 50.0  $\mu$ g/m<sup>3</sup>

Therefore. the days to be investigated are the: 10 and 16 of October.

For the above days. the available information from MEPA air monitoring network was related to:

- Għarb station
- Msida station
- Żejtun station
- Kordin station

The PM10 daily mean values were:

- Għarb station:
  - October 10 daily concentration of 35.02  $\mu$ g/m<sup>3</sup> against daily limit value of 50.0  $\mu$ g/m<sup>3</sup>
  - $\circ~$  October 16 daily concentration of 34.1  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
- Msida station:
  - $\circ~$  October 10 daily concentration of 62.15  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
  - 0
- $\circ~$  October 16 daily concentration of 36.81  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$



0

- Żejtun station:
  - $\circ~$  October 10 daily concentration of 10.69  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
  - $\circ~$  October 16 daily concentration of 28.29  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
- Kordin station
  - $\circ~$  October 10 daily concentration of 37.59  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
  - $\circ~$  October 16 daily concentration of 27.49  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$

The following table summarizes the above information:

| Date       | Enemalta air monitoring stations |            | MEPA air monitoring network stations |        |         |         |  |
|------------|----------------------------------|------------|--------------------------------------|--------|---------|---------|--|
|            | Marsaxlokk                       | Birżebbuġa | Għarb                                | Msida* | Kordin* | Żejtun* |  |
| October 10 | 56.58                            | N.V        | 35.02                                | 62.15  | 37.59   | 10.69   |  |
| October 16 | 52.38                            | N.V        | 34.1                                 | 36.81  | 27.49   | 28.29   |  |

Table 57: PM<sub>10</sub> measurements on the 10 and 16 of October

#### The following figure shows the above information:

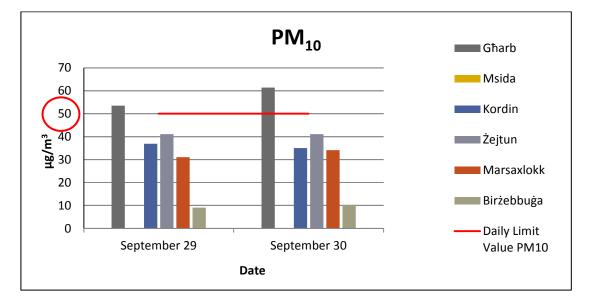



Figure 96: Air monitoring data plot on the days of exceedance



The data indicating the daily mean  $PM_{10}$  concentration at the different MEPA stations was extracted from the database and represented in the figure above. On the  $10^{th}$  of October the Msida station also experienced an exceedance in the daily limit value; while on the  $16^{th}$  only Marsaxlokk station experienced a high concentration. As this data does not provide any clear clarification the mean hourly values reached in MEPA station on the  $10^{th}$  and  $16^{th}$  of October were analyzed as well.

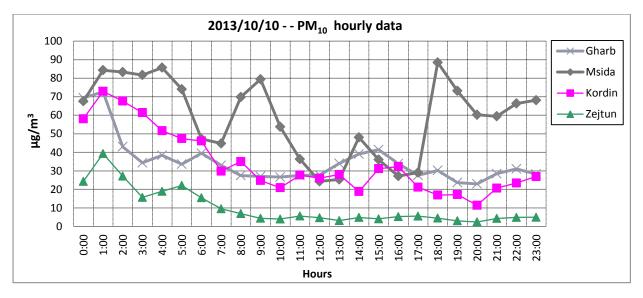



Figure 97: - PM<sub>10</sub> hourly data for the 10th of October 2013

On the  $10^{th}$  of October the figure above shows a gradual PM<sub>10</sub> concentration increase in the stations of Msida, Kordin and Gharb from seven in the morning until eleven in the night. Based on this observation a Saharan event could have occurred on the Maltese Islands on this day.

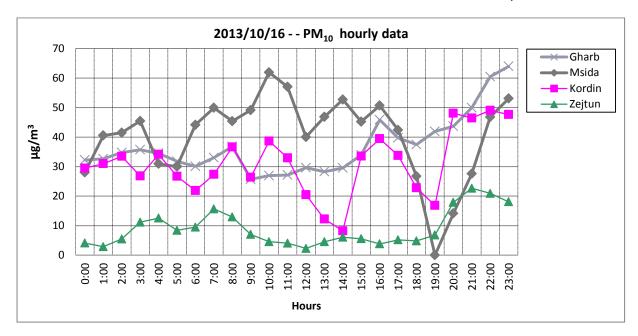



Figure 98: - PM<sub>10</sub> hourly data for the 16th of October



In this case, there is no clear trend on the  $PM_{10}$  values as it occurred on the  $16^{th}$ , nevertheless form the 18:00hrs onwards the figure above shows and increment in the concentration recorded on the Gharb MEPA stations.

# Step 2 – Satellite images

The exceedance in January has to be correlated with satellite imagery. The satellite images consulted were downloaded from the AERONET network which produces data available on the NASA website: http://rapidfire.sci.gsfc.nasa.gov/subsets/?subset=AERONET\_ETNA.

The belowimages represent satellite images of 250m bands for Aqua and 250m bands for Terra.

# Step 3 – Mathematical Modelling

The data available was analysed using the BSC-DREAM dust model (with concentration and deposition indicated) and HYSPLIT 4 model with a printout at heights of 100, 500 and 1500 metres above ground level, that show also mixing heights, taken over a period of 3 days prior to the day when the exceedance were recorded. BSC-DREAM dust model is helpful because it provides information not only on dust aerosols, but also because it provides the reconstruction of the wind field that is essential to better evaluate the HYSPLIT 4 model outputs. The BSC-DREAM outputs used are related to the Dust Loading (expressed in  $g/m^2$ ) and to the Lowest Level Dust Concentrations (expressed in  $\mu g/m^3$ ).

### Step 4 - Satellite data

In cases where satellite images and mathematical modelling outputs were not enough to verify whether on the identified day, Saharan dust episodes really took place, satellite data from three different instruments: the MODIS sensor and AERONET data were analysed for the identified day.



# • <u>10 October</u>

#### **AERONET** images

The below images represent satellite images of 250m bands for Aqua and 250m bands for Terra.




Figure 99: AERONET\_ETNA 250 m \_TERRA



Figure 100: AERONET\_ETNA 250 m \_AQUA

These images provided by the satellite did not provide any clear indication of a Saharan event.for the  $10^{th}$  October.

#### **BSC-DREAM model**

The figure below represents the BSC-DREAM prediction of total dust, expressed in terms of the lowest model level dust concentration (in  $\mu$ g m<sup>3</sup>) and of dust load (in g m<sup>2</sup>). The dust load is in size classes between 0.1 and 10  $\mu$ m over Europe at 12:00 UTC and superimposed on the same figure are the corresponding hourly forecasted wind vectors at 3000 m height level.



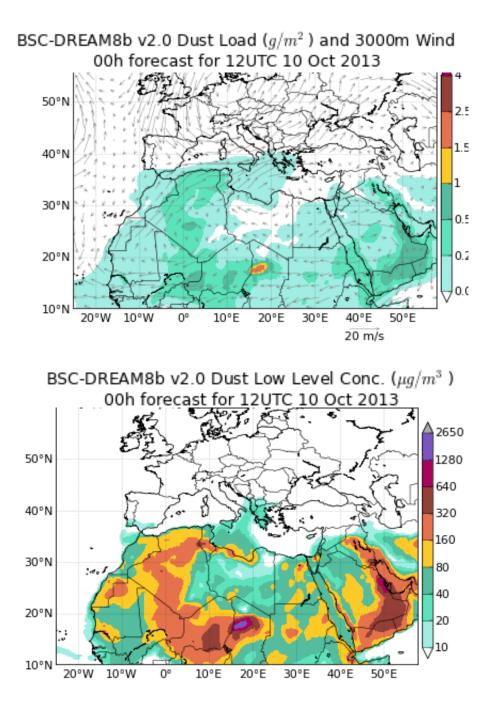



Figure 101: BSC-DREAM outputs on the 10 October

In the dust loading image it can be noted that on the 10<sup>th</sup> October the regions of Southern Europe and North Africa experienced a series of wind vortices of medium to high intensity. Malta was mainly influenced by a wind vortex originated from the coast of Libya.

The dust concentration image also shows that in this vortex the concentration was higher in Libya and lower in Malta.



### **HYSPLIT** model

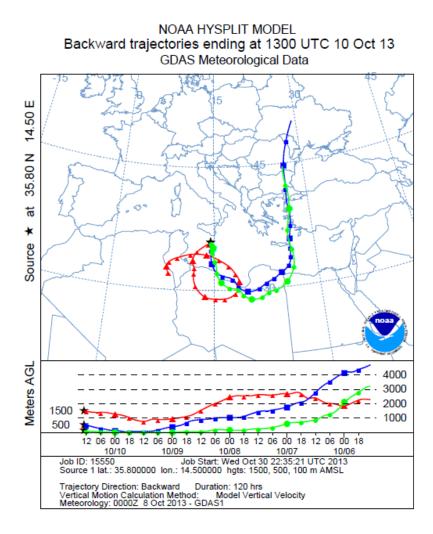



Figure 102: HYSPLIT backward trajectory at 1500m. 500m and 100 m on the 10 October

The image above confirms the information provided by the BSC-DREAM model' as it can be seen from the backward trajectory. Malta was influenced by a wind vortex coming from the North of Libya.

The Mix Depth layer on this date occurred at 372 height; hence the highest wind layer which passed through a Saharan region the longest time, probably did not have an influence on the PM 10 concentration.



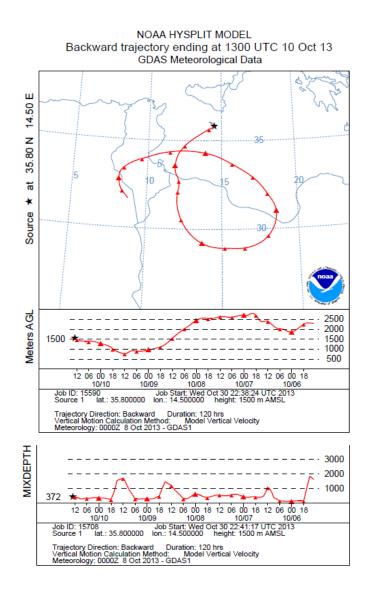



Figure 103: HYSPLIT backward trajectory at 1500m on the 10 October



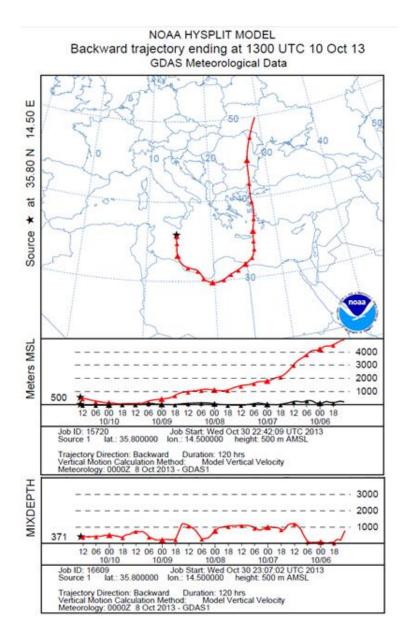



Figure 104: HYSPLIT backward trajectory at 500m on the 10 October



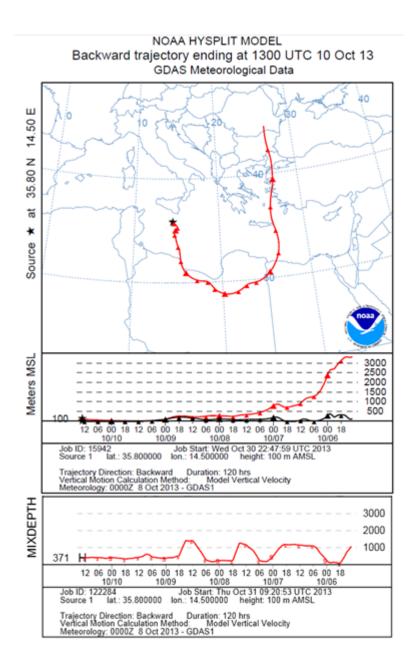



Figure 105: HYSPLIT backward trajectory at 500m on the 10 October

The fact that wind layers of 500 and 100 m passed through Saharan regions on the previous hours reached Malta and were blowing at low heights on the  $10^{th}$  could have influenced the PM10 concentrations on Malta . Nevertheless this influence was most certainly not very strong as the exceedance was only by 6.3  $\mu$ g/m<sup>3</sup>.



### **MODIS** sensor

The MODIS data available does not report information and values over Maltese islands.

The only detailed information available over the Maltese Islands relates to the SMF value indicating that Malta was not affected by dust aerosols.

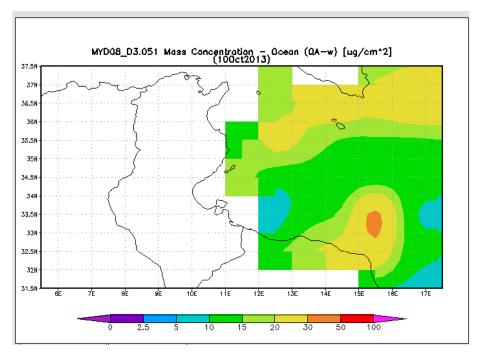



Figure 106: MODIS Terra and Aqua images on the 10 October

The image above shows that the mass concentration around the Maltese Islands reached medium values and higher ones in the center of the wind vortex affecting the Islands. close to the North Coast of Libya. This information could confirm an influence in the PM<sub>10</sub> concentration coming from the Saharan region but again of low intensity due to the low exceedance reached.



### • <u>16 October</u>

#### **AERONET** images

he below images represent satellite images of 250m bands for Aqua and 250m bands for Terra.



Figure 107: AERONET\_ETNA 250 m \_TERRA



Figure 108: AERONET\_ETNA 250 m \_AQUA

These images provided by the satellite did not provide any clear indication of a Saharan event.for the  $16^{th}$  October.



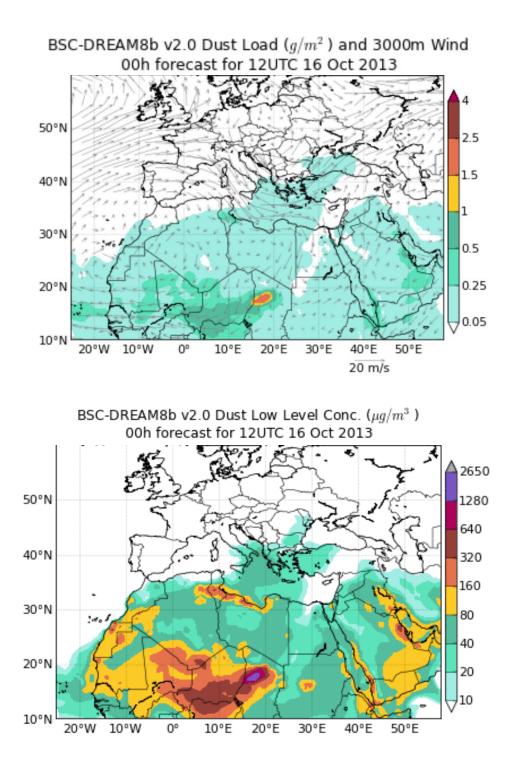



Figure 109: BSC-DREAM outputs on the 16 October

From the dust loading image, it can be noted that on the 16<sup>th</sup> October, Malta was affected by a wind field from medium to low intensity which originated in the North-West which passed through Spain, Corsica and Sicily, before reaching the islands; therefore no wind fields from the Saharan region reached Malta that day.



# HYSPLIT model

The following figures show the application of HYSPLIT on the Maltese islands on the 16<sup>th</sup> of October

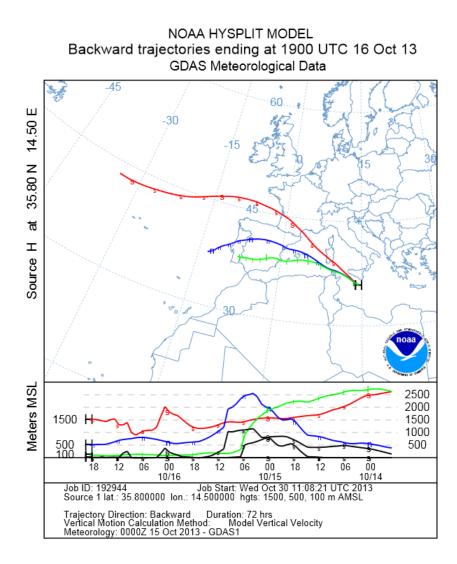
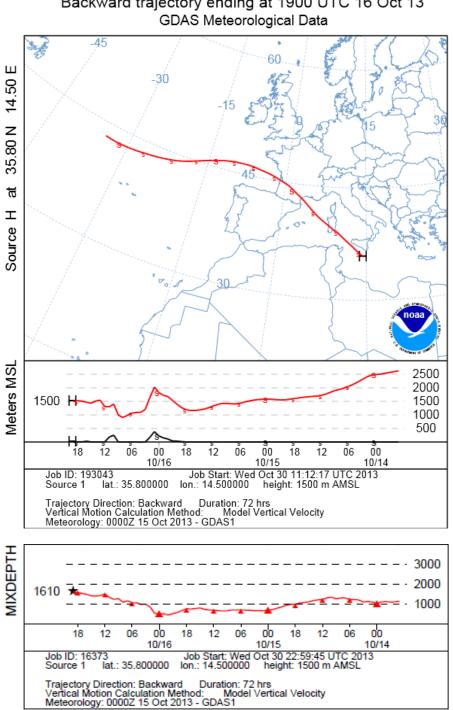
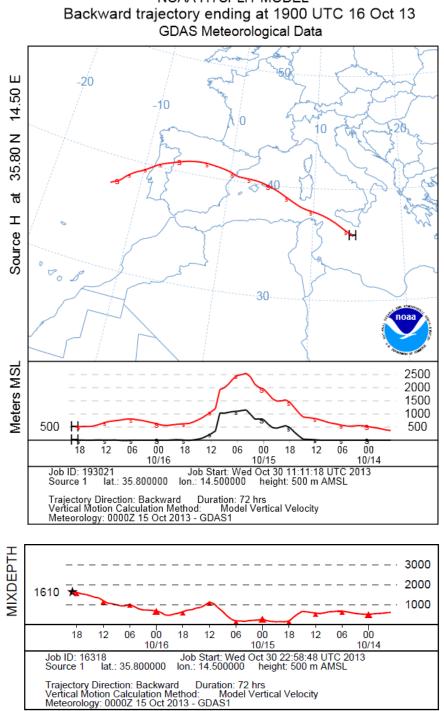




Figure 110: HYSPLIT backward trajectory at 1500. 500. 100m on the 16 October

As in the 10<sup>th</sup> of October, the information provided by the BSC-model is consistent with the one given by the HYSPLIT Model in the 16<sup>th</sup>. The wind fields at 1500m. 500m. and 100m height came from the North-West passing through Spain, Corisca and Sicily reaching finally Malta, hence not from Saharan regions.






NOAA HYSPLIT MODEL Backward trajectory ending at 1900 UTC 16 Oct 13

Figure 111: HYSPLIT backward trajectory at 1500m on the 16 October





NOAA HYSPLIT MODEL





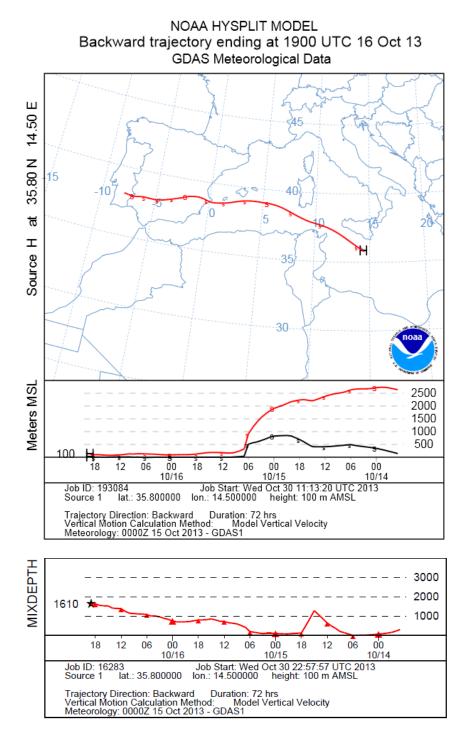



Figure 113: HYSPLIT backward trajectory at 100m on the 16 October



### Conclusions

Based on the analysis performed, it could be concluded that on the 10<sup>th</sup> October the exceedance reached could be attributed to a dust loading episode of low intensity from the Saharan region; while on the 16<sup>th</sup> October the exceedance could not have been due to a Saharan dust episode hence anthropogenic activities might have been the cause.



# 2.21. NOVEMBER

2.21.1. Analysis for the Identification of Saharan Dust The analysis of the air monitoring data during the period between 14<sup>th</sup> and the 27<sup>th</sup> November determined the following exceedances:

- At Marsaxlokk site an exceedance of daily limit value of PM<sub>10</sub> occurred on:
  - $\circ$  November 19 daily concentration of 67.20 µg/m<sup>3</sup> against daily limit value of 50.0 µg/m<sup>3</sup>
- At Birżebbuġa an exceedance of the daily limit value of PM<sub>10</sub>, occurred on:
  - $\circ$  November 19 daily concentration of 74.12 µg/m3 against daily limit value of 50.0 µg/m3

# Step 1: MEPA data analysis

The mean  $PM_{10}$  concentration at the different MEPA stations on the 19<sup>th</sup> November was extracted from the database.

The  $PM_{10}$  daily mean values were:

- Għarb station:
  - $\circ~$  November 19 daily concentration of 61.12  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
- Msida station:
  - $\circ~$  November 19 daily concentration of 70.76  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
- Żejtun station:
  - $\circ~$  November 19 daily concentration of 52.3  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
- Kordin station
  - $\circ~$  November 19 daily concentration of 59.63  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$



| Date        | Enemalta air monitoring stations |            | MEPA air monitoring network stations |       |        |        |  |
|-------------|----------------------------------|------------|--------------------------------------|-------|--------|--------|--|
|             | Marsaxlokk                       | Birżebbuġa | Għarb                                | Msida | Żejtun | Kordin |  |
| November 19 | 67.20                            | 74.12      | 61.12                                | 70.76 | 52.3   | 59.63  |  |

### The following table summarizes the above information:

Table 58: PM<sub>10</sub> measurements on the 19 November

The data indicating the daily mean PM<sub>10</sub> concentration at the different MEPA stations was extracted from the database and represented in the figure below:

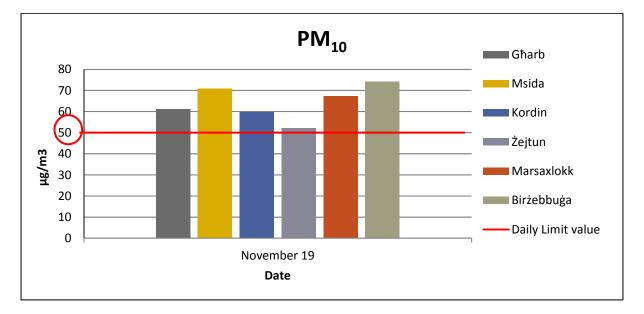



Figure 114: Air monitoring data plot on the days of exceedance

During the 19<sup>th</sup> November the four stations experienced an excedance of the daily Limit value which could indicate the possibility of a Saharan event.

In order to assess whether or not a Saharan event took place, a detailed analysis was carried out based on the EU guidelines in Steps 2 and 3 below. Satellite images were evaluated and the mathematical model tools applied in order to reach a conclusion.

For setting up the model variables in Step 3, a  $PM_{10}$  hourly concentration analysis was applied. This information is then used to best fit the modelling with HYSPLIT and run simulations at the specific hours that present the maximum probability of the eventual episode under investigation.

The following figure shows the variation of the  $PM_{10}$  hourly concentrations on 19 November for all the MEPA fixed stations.



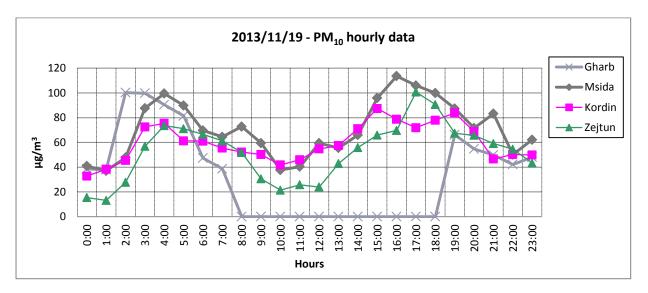



Figure 115: PM<sub>10</sub> hourly data for the 19 November

The figure above shows that during the  $19^{th}$  November the four MEPA stations followed the same pattern in the PM<sub>10</sub> concentration trend. Two picks can be clearly distinguished, both significantly above the daily limit value. The first one started before 3:00hrs and lasted until 7:00hrs, followed by the second one, from 14:00hrs until 20:00hrs. The fact that the first peak concentration occurred during the first hours of the day, when no high traffic density takes place, indicates the possibility that a Saharan event occurred.

According this data, the HYSPLIT model will be specified at 02.00 UTC (corresponding to 4.00hrs in Malta) on November 19<sup>th</sup>, defined as the moment of maximum peak of the possible dust event.

### Step 2 – Satellite images

There were no satellite images available.

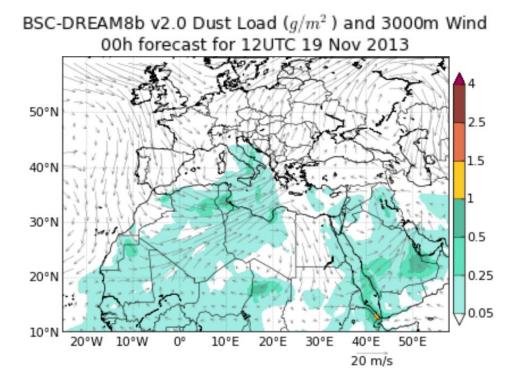
#### Step 3 – Mathematical Modelling

The data available was analysed using the BSC-DREAM dust model (with concentration and deposition indicated) and HYSPLIT 4 model with a printout at heights of 100, 500 and 1500 metres above ground level, that show also mixing heights, taken over a period of 3 days prior to the day when the exceedance were recorded. BSC-DREAM dust model is helpful because it provides information not only on dust aerosols, but also because it provides the reconstruction of the wind field that is essential to better evaluate the HYSPLIT 4 model outputs. The BSC-DREAM outputs used are related to the Dust Loading (expressed in  $g/m^2$ ) and to the Lowest Level Dust Concentrations (expressed in  $\mu g/m^3$ ).

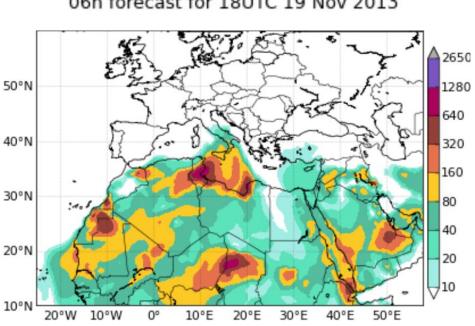


### Step 4 - Satellite data

In cases where satellite images and mathematical modelling outputs were not enough to verify whether on the identified day, Saharan dust episodes really took place, satellite data from three different instruments: the MODIS sensor and AERONET data were analysed for the identified day.


### 19 November

### **AERONET** images


There were no satellite images available for this day.

#### **BSC-DREAM dust model**

The figure below represents the BSC-DREAM prediction of total dust, expressed in terms of lowest model level dust concentration (in  $\mu g/m^3$ ) and of dust load (in  $g/m^2$ ). The dust load is in size classes between 0.1 and 10  $\mu$ m over Europe at 12:00 UTC and 18.00 UTC, and superimposed on the same figure are the corresponding hourly forecasted wind vectors at 3000m height level.



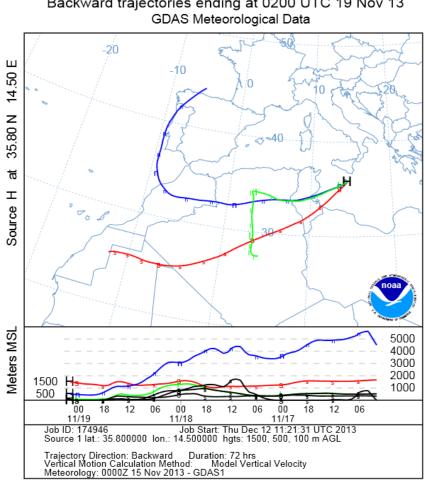




BSC-DREAM8b v2.0 Dust Low Level Conc. (µg/m<sup>3</sup>) 06h forecast for 18UTC 19 Nov 2013

Figure 116: BSC-DREAM outputs on the 19 November

The BSC-DREAM output expressed in terms of dust load, shows a wind field coming from the Northern Atlantic areas descending until North Africa and passing through the Saharan region before reaching Malta and Southern Italy.


The dust concentration image shows several areas affected by dust aerosol including West Sahara, Morocco, Tunisia, the coast of Libya as well as Malta and the South of Italy. This high concentration is likely due to the wind field present above this region, therefore, there is a correlation between the two BSC-DREAM outputs.

#### **HYSPLIT** model

The following figure shows the application of HYSPLIT on the Maltese islands on the 19<sup>th</sup> of November. The HYSPLIT output is related to 02:00 UTC, defined as the moment of maximum peak of the possible dust event.

The HYSPLIT model output related to the conditions on the 19<sup>th</sup> November shows that the backward trajectories at the level of 100, 500 and 1500 meters above ground level, transited over Saharan regions, even for large segments, before reaching the Maltese Islands. Of special interest is the backward trajectory at 100m height, which passed through Libya and Tunisia, where the BSC-DREAM outputs showed presence of high dust low level concentration.

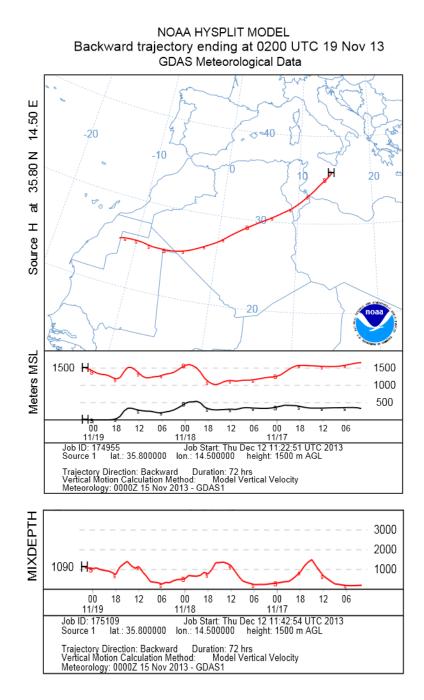


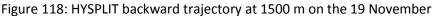


NOAA HYSPLIT MODEL Backward trajectories ending at 0200 UTC 19 Nov 13

Figure 117: HYSPLIT backward trajectory at 1500m, 500m and 100 m on the 19 November

The data provided by the HYSPLIT model is in coherence with the images provided by the BSC-Model. The wind backwards trajectories at a 1500, 500 and 100m height, passed through Saharan regions during more than a day before they reached the Maltese islands, possibly bringing with them high dust concentrations.


The following figures show, for each backward trajectory, the variation of the parameters "Terrain height" and "Mixed layer depth", along the path. This information allows some further assessment about the probable intensity of the event at the arriving-point of this trajectory:


- a reduced distance from the backward trajectory level and the terrain height is considered 0 to be an indicator of a higher intensity event, due to a major implication of the lower level of the atmosphere;
- the presence, along the path, of many points at which the trajectory level is above the mixed 0 layer depth is considered an indicator of a possible decrease of the intensity of the dust aerosol, even if the trajectory being always under the mixed layer depth may be affected by



higher level of dust deposition along the path, with minor intensity at the ending-point of the backward trajectory;

- a mixed layer depth higher than the ending-level of each backward trajectory is an indicator of a higher level of intensity of the event;
- 0







The path of the backward trajectory at 1500 meters, originated in Mauritania and arrived to Malta after passing over Algeria and Tunisia. The mix depth quote over Malta was 1090 meters, lower than the arriving quote of this backward trajectory.

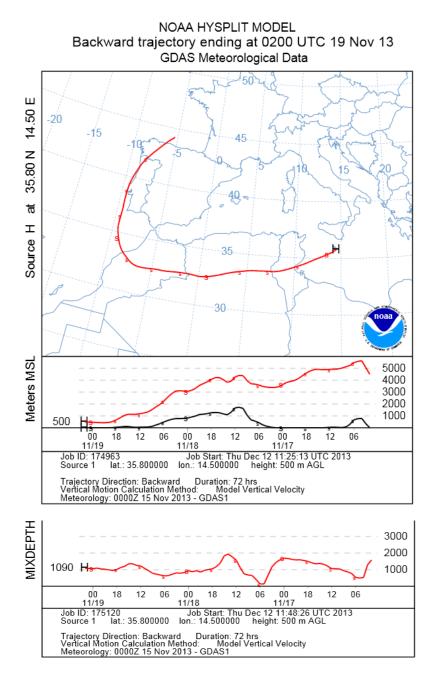



Figure 119: HYSPLIT backward trajectory at 500 m on the 19 November

# The

backward trajectory at 500 meters above ground level, came from North-West Spain and reached the Maltese Islands after passing over the Saharan regions of Morocco, Algeria and Tunisia. This



trajectory is compliant with the wind field calculated by BSC-DREAM model. The mixdepth quote over Malta was higher than the arriving quote of this backward trajectory.

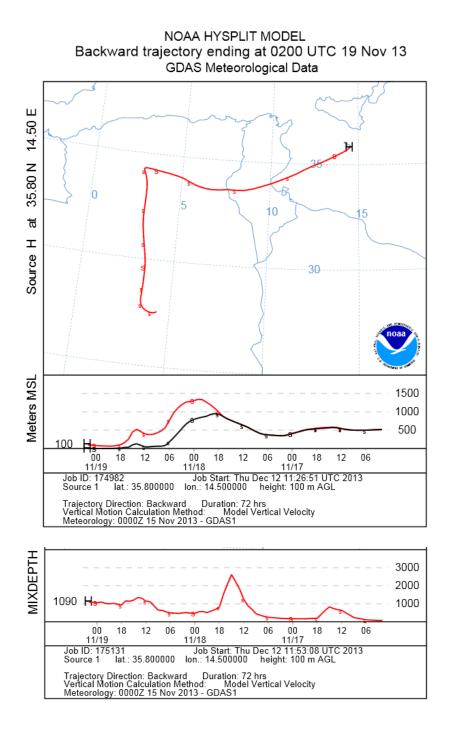



Figure 120: HYSPLIT backward trajectory at 100 m on the 19 November

The backward trajectory related to 100 meters level passed across Libya and Tunisia before reaching Malta. The mixdepth quote over Malta was 1090 meters, higher than the arriving quote of this backward trajectory.



### Conclusions

Regarding the situation on the 19<sup>th</sup> November over the Maltese islands, there were no satellite images available to make a visual analysis, but the BSC-DREAM and HYSPLIT models provided information which showed a strong correlation between each other.

The BSC-DREAM output regarding dust load showed a wind field coming from the North Atlantic area that at the arrival to the Northern Africa coast splitted in two, passing both through Saharan regions and converting afterwards before arriving to the Maltese islands. The BSC-DREAM model output related to the dust concentration shows that the areas affected by dust aerosols were along the Libyan and Tunisian coasts and Mediterranean area, specifically between the African coasts and the Maltese Islands.

The HYSPLIT outputs were in coherence with the BSC-DREAM outputs as the backward trajectories at 1500, 500 and 100 m above ground level passed across Saharan regions before reaching Malta.

MODIS sensor outputs did not provide any further clarification on the situation over Malta the 19<sup>th</sup>, hence the data was not included in the final analysis.

On the basis of the above considerations, it was assessed that on the  $19^{th}$  November a Saharan dust event took place over Malta which influenced the final  $PM_{10}$  concentrations registered in the monitoring stations.



# 2.22. JANUARY

### 2.22.1. Analysis for the Identification of Saharan Dust

#### Step 1: MEPA data analysis

The analysis of the air monitoring data during the period between the 7<sup>th</sup> and the 31<sup>st</sup> January 2014 determined the following exceedances:

- at Marsaxlokk site, exceedance of daily limit value of PM<sub>10</sub>, occurred on
  - ο January 18 daily concentration of 79.86  $\mu$ g/m<sup>3</sup> against daily limit value of 50.0  $\mu$ g/m<sup>3</sup>
  - ο January 19 daily concentration of 102.62  $\mu$ g/m<sup>3</sup> against daily limit value of 50.0  $\mu$ g/m<sup>3</sup>
  - ο January 20 daily concentration of 149.62  $\mu$ g/m<sup>3</sup> against daily limit value of 50.0  $\mu$ g/m<sup>3</sup>
  - $\circ$  January 30 daily concentration of 64.45 μg/m<sup>3</sup> against daily limit value of 50.0 μg/m<sup>3</sup>
  - $\circ~$  January 31 daily concentration of 127.61  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
- at Birżebbuġa site, exceedance of daily limit value of PM<sub>10</sub>, occurred on
  - $\circ~$  January 18 ~ daily concentration of 95.73  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
  - $\circ~$  January 19 daily concentration of 99.94  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
  - $\circ~$  January 20 daily concentration of 150.25  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
  - $\circ~$  January 30 ~ daily concentration of 74.88  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
  - $^\circ~$  January 31 daily concentration of 144.19  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$



For the above days, the available information from MEPA air monitoring network was related to:

- Għarb station
- Msida station
- Żejtun station
- Kordin station

The PM<sub>10</sub> daily mean values were:

- Għarb station:
  - $\circ~$  January 18 ~ daily concentration of 80.98  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
  - $\circ~$  January 19 daily concentration of 98.53  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
  - $\circ~$  January 20 daily concentration of 120.05  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
  - $\circ~$  January 30  $\,$  daily concentration of 55.94  $\mu g/m^3$  against daily limit value of 50.0  $\,\mu g/m^3$
  - $\circ~$  January 31 daily concentration of 97.42  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
- Msida station:
  - $\circ~$  January 18  $\,$  daily concentration of 74.61  $\mu g/m^3$  against daily limit value of 50.0  $\,\mu g/m^3$
  - $\circ~$  January 19 daily concentration of 101.43  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
  - $\circ~$  January 20 daily concentration of 148.15  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
  - $\circ~$  January 30 daily concentration of 70.88  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
  - $\circ~$  January 31 daily concentration of 130.50  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
- Żejtun station:
  - $\circ~$  January 18 ~ daily concentration of 50.02  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$



- $\circ~$  January 19 daily concentration of 76.48  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
- $\circ~$  January 20 daily concentration of 129.38  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
- ο January 30 daily concentration of 47.87  $\mu$ g/m<sup>3</sup> against daily limit value of 50.0  $\mu$ g/m<sup>3</sup>
- $\circ~$  January 31 daily concentration of 107.97  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
- Kordin station
  - ο January 18 daily concentration of 68.93  $\mu$ g/m<sup>3</sup> against daily limit value of 50.0  $\mu$ g/m<sup>3</sup>
  - $\circ~$  January 19 daily concentration of 92.22  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
  - $\circ~$  January 20 daily concentration of 141.91  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
  - $\circ~$  January 30 daily concentration of 62.43  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
  - $\circ~$  January 31 daily concentration of 124.45  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$



| Date       | Enemalta air monitoring stations |            | MEPA air monitoring network stations |        |        |        |
|------------|----------------------------------|------------|--------------------------------------|--------|--------|--------|
|            | Marsaxlokk                       | Birżebbuġa | Għarb                                | Msida  | Kordin | Żejtun |
| January 18 | 79.86                            | 95.73      | 80.98                                | 74.61  | 68.93  | 50.02  |
| January 19 | 102.62                           | 99.94      | 98.53                                | 101.43 | 92.22  | 76.48  |
| January 20 | 149.62                           | 150.25     | 120.05                               | 148.15 | 141.91 | 129.38 |
| January 30 | 64.46                            | 74.89      | 55.94                                | 70.88  | 62.43  | 47.87  |
| January 31 | 127.61                           | 144.19     | 97.42                                | 130.5  | 124.45 | 107.97 |

#### The following table summarizes the above information:

Table 59: PM<sub>10</sub> measurements on the 18, 19 and 20 January 2014

#### The following figure shows the above information:

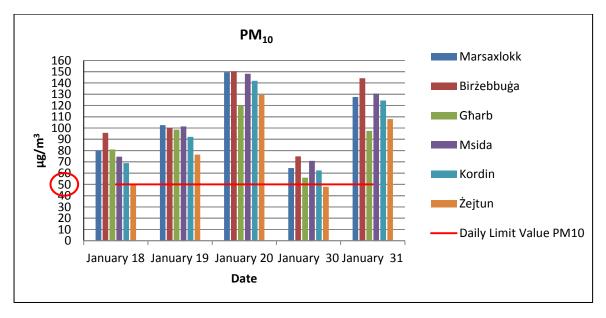
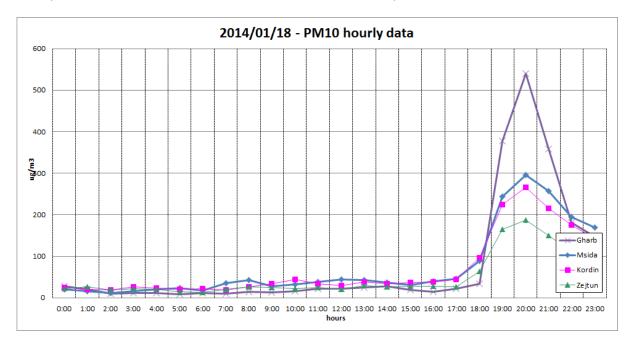



Figure 121: Air monitoring data plot on the days of exceedance


During the 18<sup>th</sup>, 19<sup>th</sup>, 20<sup>th</sup>, 30<sup>th</sup> and 31<sup>st</sup> of January the four stations experienced an exeedance of the Daily Limit value, which could indicate the possibility of a Saharan event.

In order to assess whether or not a Saharan event took place, a detailed analysis was carried out based on the EU guidelines in Steps 2 and 3 below. Satellite images were evaluated and the mathematical model tools applied in order to reach a conclusion.



For setting up the model variables in Step 3, a PM<sub>10</sub> hourly concentration analysis was applied. This information is then used to best fit the modelling with HYSPLIT and run simulations at the specific hours that present the maximum probability of the eventual episode under investigation.

The following figure shows the variation of the  $PM_{10}$  hourly concentrations  $18^{th}$ ,  $19^{th}$ ,  $20^{th}$ ,  $30^{th}$  and  $31^{st}$  of January for all the MEPA fixed stations.



Hourly measures for the 18<sup>th</sup>, 19<sup>th</sup>, 20<sup>th</sup>, 30<sup>th</sup> and 31<sup>st</sup> of January 2014.

Figure 122: PM<sub>10</sub> hourly data for the 18 January

From the graph above, it can be seen that the levels of  $PM_{10}$  were below the daily limit value during the entire day until 1900hrs when a sudden and strong concentration increase was recorded in all MEPA monitoring stations. According this data, the HYSPLIT model will be specified at 19.00 UTC (corresponding to 2000hrs in Malta) on the 18<sup>th</sup> Janurary, defined as the moment of maximum peak of the possible dust event.



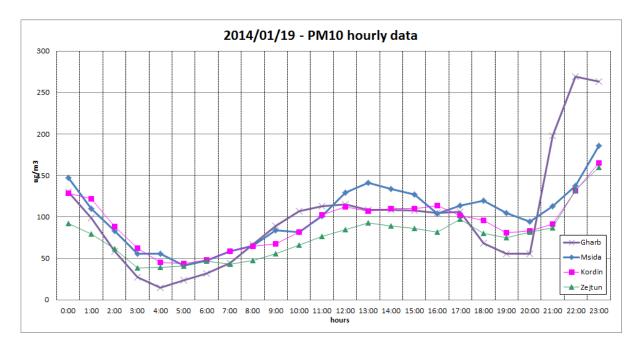



Figure 123: PM<sub>10</sub> hourly data for the 19 January

During the  $19^{th}$  of January, the PM<sub>10</sub> values were generally below the daliy limit value from 2100hrs onwards, when a strong increased occurred in all the MEPA stations. Due to the sudden increase at all the stations and the time of occurance, these values could be attributed to a Saharan event. According this data, the HYSPLIT model will be specified at 21.00 UTC (corresponding to 2200hrs in Malta) on the 18<sup>th</sup> Janurary, defined as the moment of maximum peak of the possible dust event.

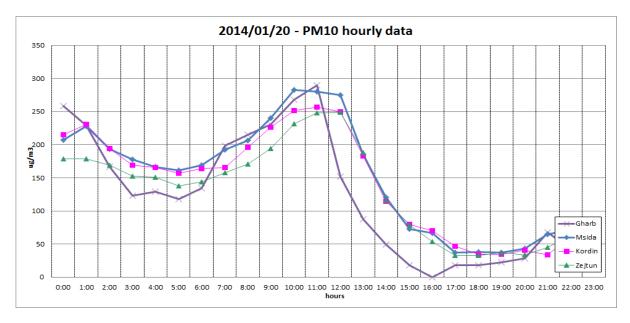



Figure 124 PM<sub>10</sub> hourly data for the 20 January



During the  $20^{th}$  of January, a peak on the registered PM<sub>10</sub> concentration occurred around 1100hrs, this event can be attributed to a dust loading episode as it is not a typical time of high density traffic on the Islands. According this data, the HYSPLIT model will be specified at 11.00 UTC (corresponding to 10 am in Malta) on the  $20^{th}$  January, defined as the moment of maximum peak of the possible dust event.

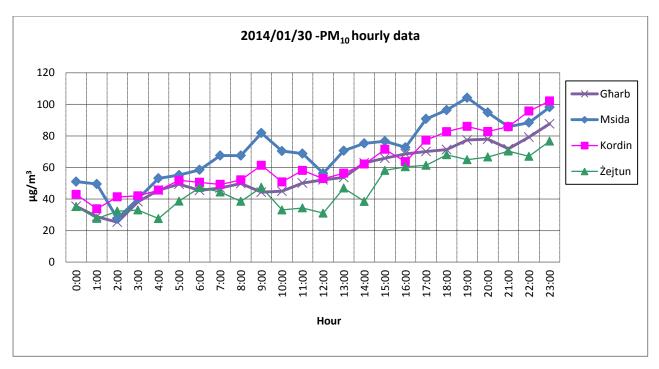



Figure 125:  $PM_{10}$  hourly data for the 30 January

From the graph above, it can be seen that at all MEPA monitoring stations, the levels of  $PM_{10}$  were gradually increased from 1400 hrs until the end of the day. According this data, the HYSPLIT model will be specified at 22.00 UTC (corresponding to 2300 hrs in Malta), defined as the moment of maximum peak of the possible dust event.



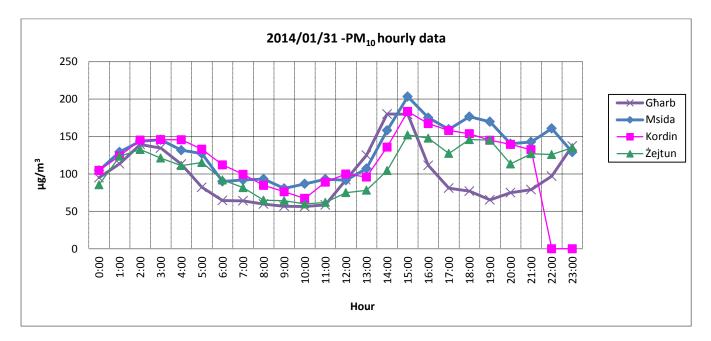



Figure 126: PM<sub>10</sub> hourly data for the 31 January

On the 31<sup>st</sup> January, the  $PM_{10}$  values experienced two common peaks at all the stations, the first one around 0200hrs and the second one, the strongest, around 1500hrs. Not being periods of high traffic density, this increase in the  $PM_{10}$  concentration could be attributed to a Saharan event. According to this data, the HYSPLIT model will be specified at 14.00 UTC (corresponding to 1500hrs in Malta), defined as the moment of maximum peak of the possible dust event.

### Step 2 – Satellite images

The exceedance in January has to be correlated with satellite imagery. The satellite images consulted were downloaded from the AERONET network which produces data available on the NASA website: http://rapidfire.sci.gsfc.nasa.gov/subsets/?subset=AERONET\_ETNA.

The belowimages represent satellite images of 250m bands for Aqua and 250m bands for Terra.

#### Step 3 – Mathematical Modelling

The data available was analysed using the BSC-DREAM dust model (with concentration and deposition indicated) and HYSPLIT 4 model with a printout at heights of 100, 500 and 1500 metres above ground level, that show also mixing heights, taken over a period of 3 days prior to the day when the exceedance were recorded. BSC-DREAM dust model is helpful because it provides information not only on dust aerosols, but also because it provides the reconstruction of the wind field that is essential to better evaluate the HYSPLIT 4 model outputs. The BSC-DREAM outputs used are related to the Dust Loading (expressed in  $g/m^2$ ) and to the Lowest Level Dust Concentrations (expressed in  $\mu g/m^3$ ).



### Step 4 - Satellite data

In cases where satellite images and mathematical modelling outputs were not enough to verify whether on the identified day, Saharan dust episodes really took place, satellite data from three different instruments: the MODIS sensor and AERONET data were analysed for the identified day.

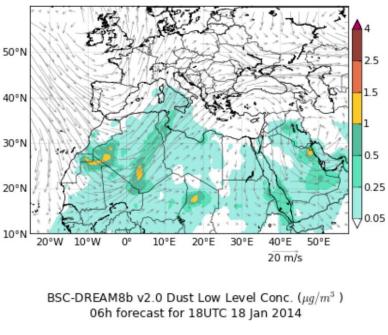
# • <u>18 January</u> AERONET images

The below images represent satellite images of 250m bands for Aqua and 250m bands for Terra.



Figure 127: AERONET\_ETNA 250m \_AQUA




Figure 128: AERONET\_ETNA 250m \_TERRA

The above images show the possible presence of a dust aerosol related to the Saharan region.



## **BSC-DREAM dust model**

The figure below represents the BSC-DREAM prediction of total dust expressed in terms of lowest model level dust concentration (in  $\mu g/m^3$ ) and of dust load (in  $g/m^2$ ). The dust load is in size classes between 0.1 and 10  $\mu m$  over Europe at 12:00 UTC and 18.00 UTC, and superimposed on the same figure are the corresponding hourly forecasted wind vectors at 3000m height level.



BSC-DREAM8b v2.0 Dust Load ( $g/m^2$ ) and 3000m Wind 00h forecast for 12UTC 18 Jan 2014

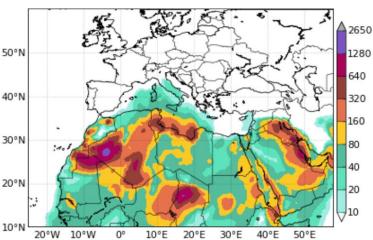
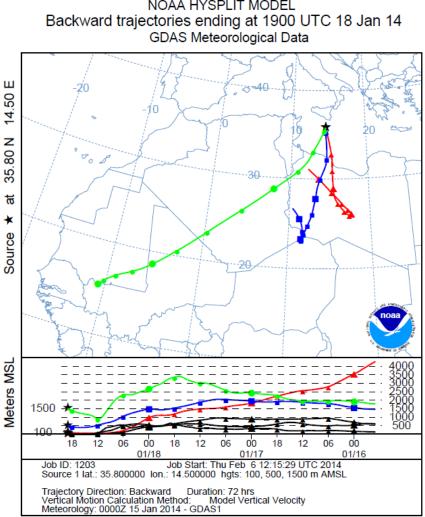



Figure 129: BSC-DREAM outputs on the 18 January

From the dust loading image it can be noted that on the 18<sup>th</sup> of January, the wind field over the Maltese islands could be mainly related to vectors from the Atlantic area. This wind field was



characterized by a path crossing over Morocco, Algeria and Tunisia, Maltese islands, Southern Italy and Balkans. This wind field could have transported dust aerosol to the Italian and Central Mediterranean areas.


The dust concentration image shows a dust aerosol in chorence with the wind field and a dust loading over Algeria, Tunisia and the Southern Central Mediterranean, with a contribution towards the Maltese islands.

Therefore, the BSC-DREAM output expressed in terms of dust concentration and dust deposition are quite consistent in showing that on 18<sup>th</sup> of January, Malta was affected by a limited Saharan dust episode.

#### HYSPLIT model

The following figure shows the application of HYSPLIT on the Maltese islands on the 18<sup>th</sup> January. The HYSPLIT output is related to 19.00 UTC, defined as the moment of maximum peak of the possible dust event.





NOAA HYSPLIT MODEL

Figure 130 : HYSPLIT backward trajectory at 1500m. 500m and 100 m on the 18 January

The HYSPLIT model output related to the conditions on the 18<sup>th</sup> January shows that the backward trajectory ending over the air monitoring zone (Marsaxlokk and Birżebbuġa) at the higher level of 1500 meters above ground level, is directly from the Saharan region, perfectly according to the wind field from BSC-DREAM. Also the backward trajectories at 100 and 500 meters above ground level are related to wind vectors from Saharan region (Lybia).

So, as the direct path from Saharan zones was at the level of 1500, 500 and 100 meters the dust load over Malta was probably of high intensity.

The following figures show, for each backward trajectory, the variation of the parameters "Terrain height" and "Mixed layer depth", along the path. This information allows some further assessment about the probable intensity of the event at the arriving-point of this trajectory:



- a reduced distance from the backward trajectory level and the terrain height is considered to be an indicator of a higher intensity event, due to a major implication of the lower level of the atmosphere;
- the presence, along the path, of many points at which the trajectory level is above the mixed layer depth is considered an indicator of a possible decrease of the intensity of the dust aerosol, even if the trajectory being always under the mixed layer depth may be affected by higher level of dust deposition along the path, with minor intensity at the ending-point of the backward trajectory;
- a mixed layer depth higher than the ending-level of each backward trajectory is an indicator of a higher level of intensity of the event;

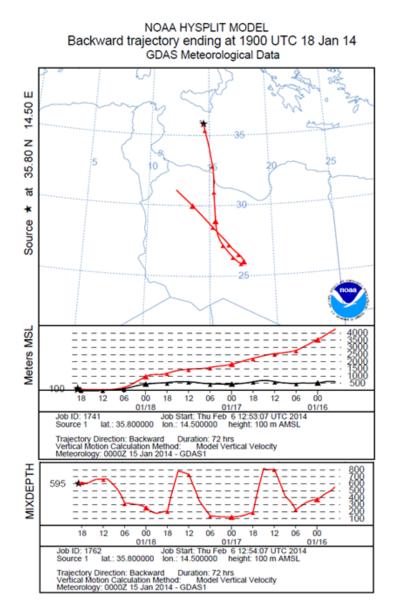



Figure 131: HYSPLIT backward trajectory at 100m on the 18 January



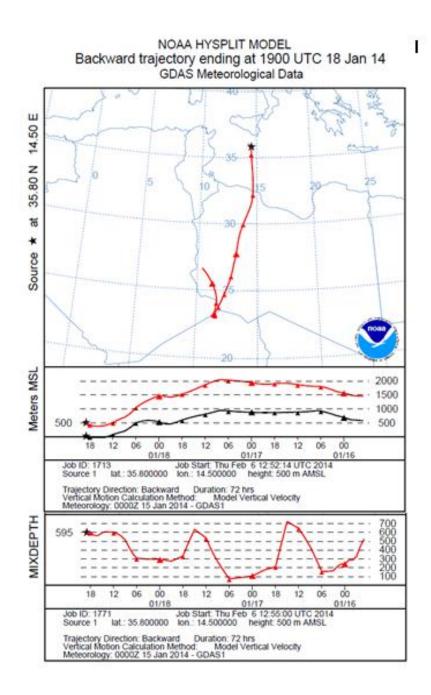
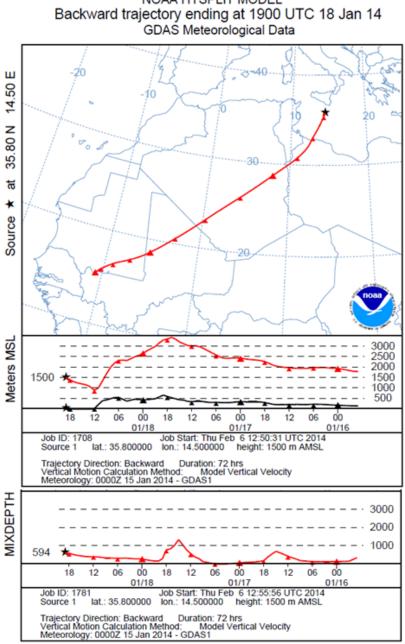
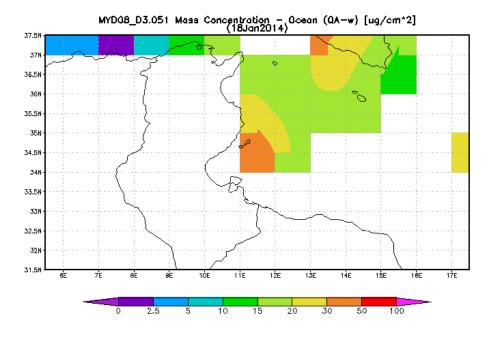




Figure 132: HYSPLIT backward trajectory at 500m on the 18 January





NOAA HYSPLIT MODEL


Figure 133: HYSPLIT backward trajectory at 1500m on the 18 January

The above figures show that the mixed layer depth over Malta on the 18<sup>th</sup> January was 594 metres, higher than the backward trajectory at 100 and 500 meters level ending-point, but lower than the backward trajectory at 1500 meters. That shows a possible contribution to the dust load mainly related to the 100 and 500 m backward trajectories, both from Saharan regions.



#### **MODIS** sensors

The MODIS data available shows a quite high value referred to the presence of dust aerosols over Malta on 18<sup>th</sup> January 2013. Both the Aerosol small mode and the mass concentration map show values significantly high to confirm the presence of dust aerosol.



Small Mode Fraction Ocean [unitless] (18Jan2014)\_\_\_\_\_ MYD08\_D3.051 Aerosol 37.5N 37 36.51 361 35.5N 35N 34.5M 341 33.5N 33N 32.5 32N 31.5N 13E 7Ė 11E 12E 14E 16E 1ÓE 156 0.162 0.2334 0.3048 0.3762 0.4476 0.519

Figure 134: MODIS Terra and Aqua images on the 18 January



## **AERONET Data**

The AERONET measurements reported in this study are related to the Lampedusa site (the site of the AERONET network closest to Malta), where the sunphotometer is located in the area of Military Base LORAM, close the west highest point of the island (150 m asl).

The available data, managed by ENEA (Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile, Italy) is plotted in the following figures:

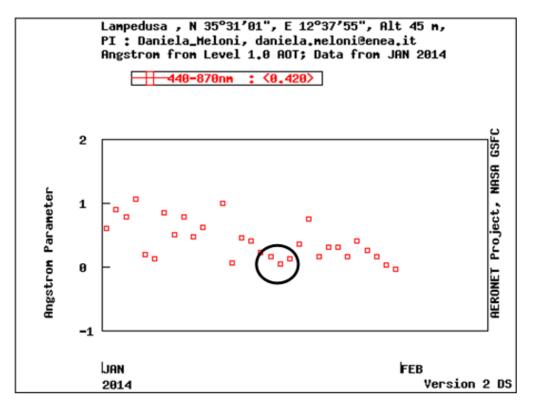



Figure 135: AERONET data from Lampedusa for January: Angstrom parameter.

The above image show the presence of a Saharan dust episode over Lampedusa on the middle of January (such episode is defined by low Angrstrom parameter values) and so the same episode must have been recorded over the Maltese Islands a few days later.



#### • <u>19 January</u>

# AERONET images

The below images represent satellite images of 250m bands for Aqua and 250m bands for Terra.

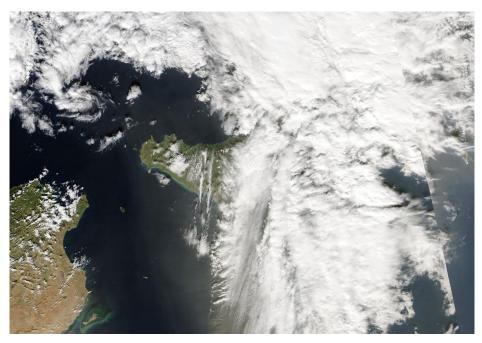



Figure 136: AERONET\_ETNA 250m \_AQUA

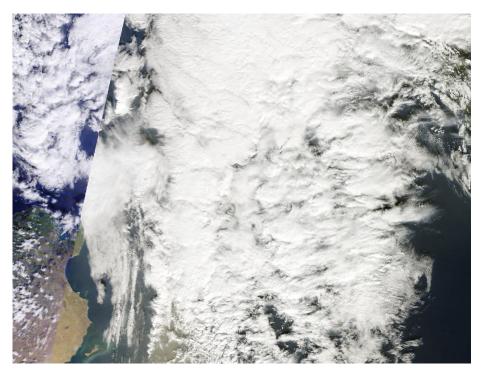
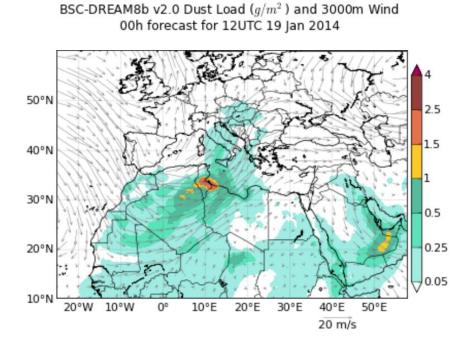




Figure 137: AERONET\_ETNA 250m \_TERRA



#### **BSC-DREAM dust model**

The figure below represents the BSC-DREAM prediction of total dust expressed in terms of lowest model level dust concentration (in  $\mu g/m^3$ ) and of dust load (in  $g/m^2$ ). The dust load is in size classes between 0.1 and 10  $\mu m$  over Europe at 12:00 UTC and 18.00 UTC, and superimposed on the same figure are the corresponding hourly forecasted wind vectors at 3000m height level.



BSC-DREAM8b v2.0 Dust Low Level Conc. ( $\mu g/m^3$ ) 06h forecast for 18UTC 19 Jan 2014

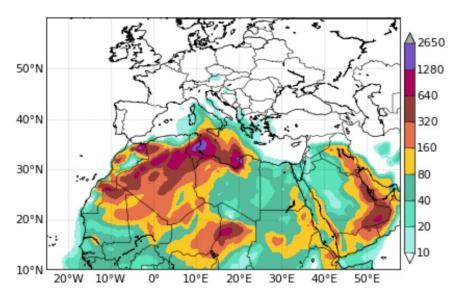



Figure 138: BSC-DREAM outputs on the 19 January



From the dust loading image it can be noted that on the 19<sup>th</sup> of January, Malta was influenced by dust loading from Saharan region of significant intensity. The wind vectors describe a strong vortex that passes through Mauritania, Algeria and Tunisia before reaching Malta.

The dust concentration image confirms a dust loading along the path from Algeria to the Italian and Balkan regions, with a maximum located in the Tunisian coast. The concentration values indicated a significant intensity event. Therefore, the BSC-DREAM output expressed in terms of dust concentration and dust deposition are consistent in showing that on the 19<sup>th</sup> of January, Malta was affected by a Saharan dust episode.

#### HYSPLIT model

The following figure shows the application of HYSPLIT on the Maltese islands on the 19<sup>th</sup> of January. The HYSPLIT output is related to 21.00 UTC, defined as the moment of maximum peak of the possible dust event.

The HYSPLIT model output related to the conditions on the 19<sup>th</sup> January shows that the backward trajectories ending over the air monitoring zone (Marsaxlokk and Birżebbuġa) at the level of 100, 500 and 1500 meters above ground level are from Saharan region (Algeria and Tunisia) and follow a path directly from this area to the Maltese islands. A direct path from Saharan region can be related to a significant increase in dust concentrations.

The following figures show, for each backward trajectory, the variation of the parameters "Terrain height" and "Mixed layer depth", along the path. This information allows some further assessment about the probable intensity of the event at the arriving-point of this trajectory:

- a reduced distance from the backward trajectory level and the terrain height is considered to be an indicator of a higher intensity event, due to a major implication of the lower level of the atmosphere;
- the presence, along the path, of many points at which the trajectory level is above the mixed layer depth is considered an indicator of a possible decrease of the intensity of the dust aerosol, even if the trajectory being always under the mixed layer depth may be affected by higher level of dust deposition along the path, with minor intensity at the ending-point of the backward trajectory;
- a mixed layer depth higher than the ending-level of each backward trajectory is an indicator of a higher level of intensity of the event;



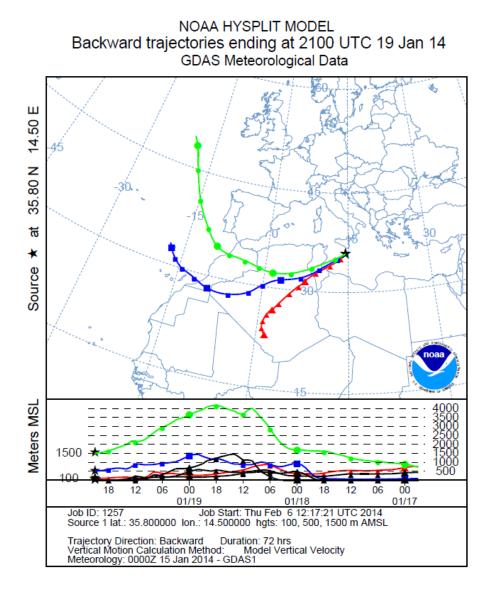



Figure 139: HYSPLIT backward trajectory at 1500m. 500m and 100 m on the 19 January



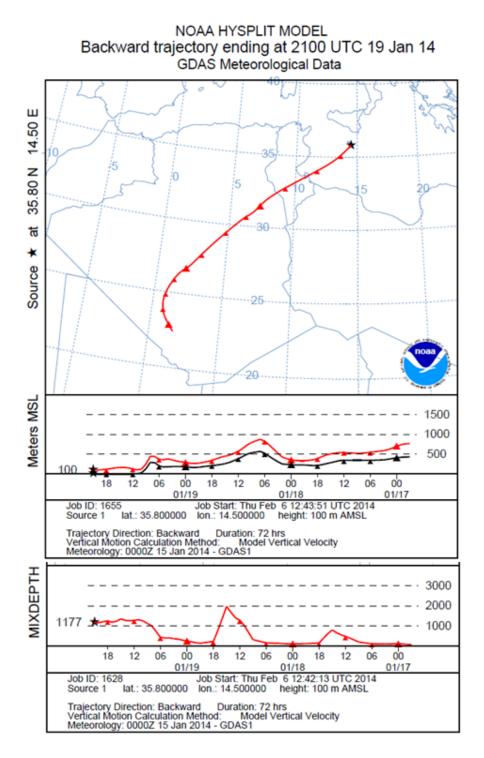



Figure 140: HYSPLIT backward trajectory at 100 m on the 19 January

The backward trajectory at 100 meters above ground level is from Saharan region and reaches Malta through a direct path over Algeria, Tunisia and the Mediterranean. The mixdepth quote over Malta was 1177 meters, higher than the arriving quote of this backward trajectory.



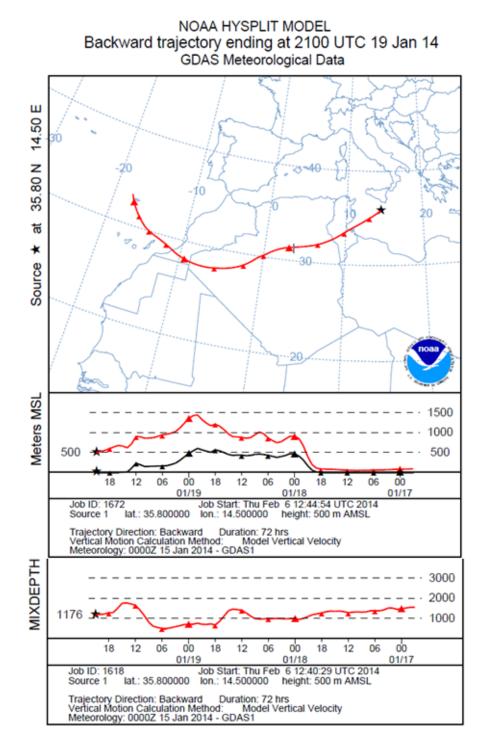
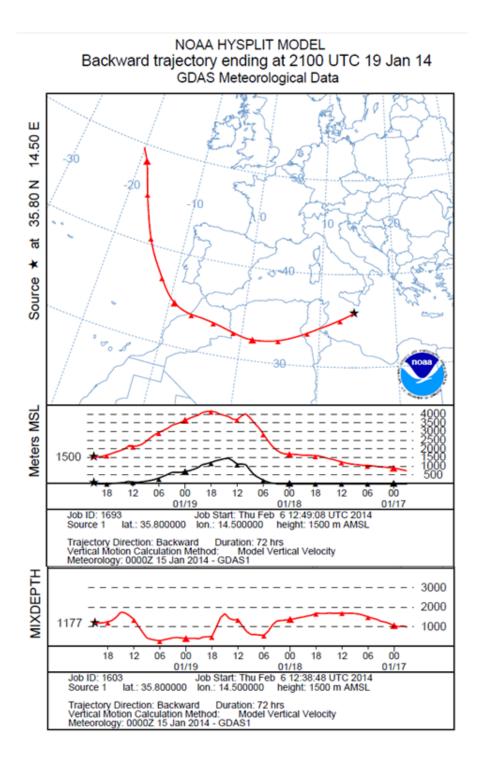
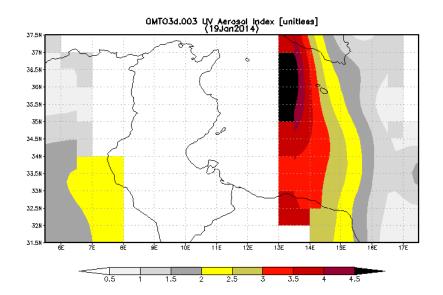


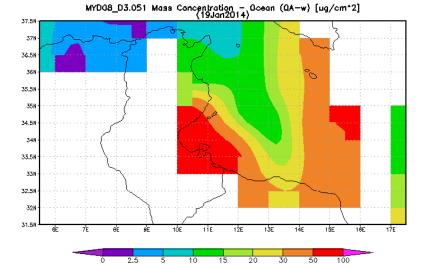

Figure 141: HYSPLIT backward trajectory at 500 m on the 19 January

The backward trajectory related to 500 meters level was directly from Saharan region, according to the wind field shown by BSC-DREAM. The mixdepth quote over Malta was higher than the arriving quote of this backward trajectory.

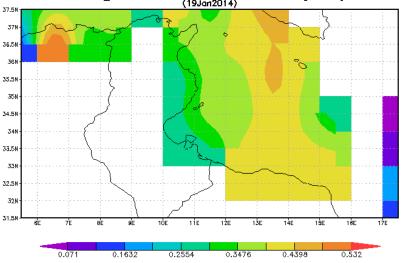






Figure 142: HYSPLIT backward trajectory at 1500 m on the 19 January


The backward trajectory at the 1500 metes level was from Saharan region (Algeria, Tunisia and Mauritania). The mixdepth quote over Malta was lower than the arriving quote of this backward trajectory.




#### **MODIS** sensors

The MODIS data available shows a quite high value referred to the presence of dust aerosols over Malta on  $19^{th}$  January 2013. The value for the Maltese Islands derived from the mass concentration is quite high ( between 30-50 µg/cm<sup>2</sup>) (abt. 0.15) and also the UV Aerosol Index (between 2.5 and 3.5). The Aerosol small fraction index computed fro Malta is about 0.5, in the medium interval. All of this information compiled suggests the presence of a Saharan event over the Island on the  $19^{th}$  of January.









MYD08\_D3.051 Aerosol Small Mode Fraction Ocean [unitless] (19Jan2014)

Figure 143: MODIS Terra and Aqua Level 3-Data on the 19 January



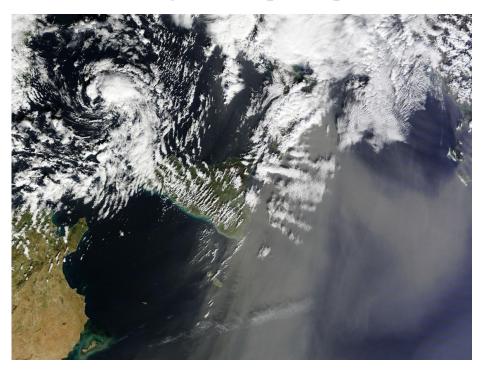
# • <u>20 January</u>

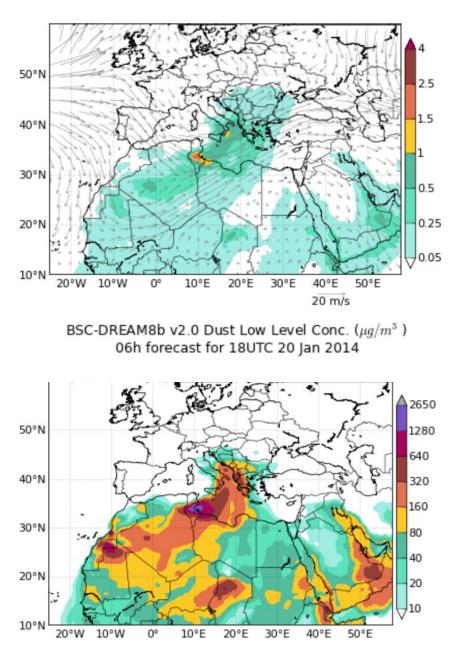
# **AERONET** images

The below images represent satellite images of 250m bands for Aqua and 250m bands for Terra.



Figure 144: AERONET\_ETNA 250m \_AQUA





Figure 145: AERONET\_ETNA 250m \_TERRA

There were no satellite images available for this day.



#### **BSC-DREAM dust model**

The figure below represents the BSC-DREAM prediction of total dust expressed in terms of lowest model level dust concentration (in  $\mu g/m^3$ ) and of dust load (in  $g/m^2$ ). The dust load is in size classes between 0.1 and 10  $\mu$ m over Europe at 12:00 UTC and 18.00 UTC, and superimposed on the same figure are the corresponding hourly forecasted wind vectors at 3000m height level.



BSC-DREAM8b v2.0 Dust Load ( $g/m^2$ ) and 3000m Wind 00h forecast for 12UTC 20 Jan 2014



From the



dust loading

image it can be noted that on the 20<sup>th</sup> of January. the wind field over Malta was mainly from Algerian and Tunisian zone. In fact, the main wind vectors originated at the Atlantic, travelled towards the south and overpassed several Saharan regions while asceding toward north before reaching Malta.

The dust concentration image confirms a dust loading along the path from Mauritania to Italy and the Balkan regions, with a maximum over Tunisia and Malta. The concentration values indicated a Saharan event of significant internsity. Therefore, the BSC-DREAM output expressed in terms of dust concentration and dust deposition are consistent in showing that on the 20<sup>th</sup> January, Malta was affected by a Saharan dust episode.

#### HYSPLIT model

The following figure shows the application of HYSPLIT on the Maltese islands on the 20<sup>th</sup> of January. The HYSPLIT output is related to 10.00 UTC, defined as the moment of maximum peak of the possible dust event.



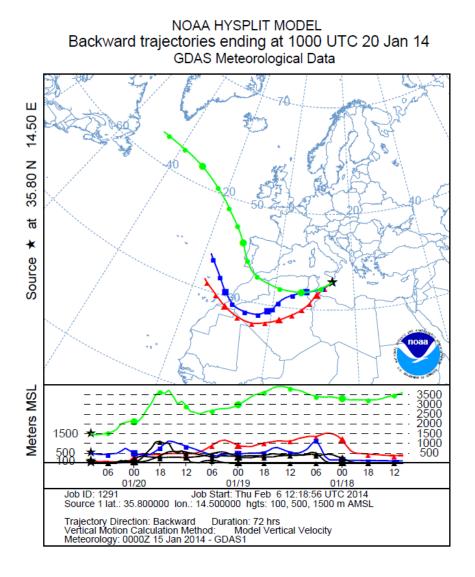



Figure 147: Backward trajectory at 1500m. 500m and 100 m on the 20 January

The HYSPLIT model output related to the conditions on the 20<sup>th</sup> January shows that the backward trajectories ending over Maltese area at the three levels of 100, 500 and 1500 meters above the ground level according to the wind field calculated by BSC-DREAM model. All the backward trajectories arriving to Malta originated at the Atlantic area and cross over Saharan regions (Moroco, Algeria and Tunisia) before reaching Malta.



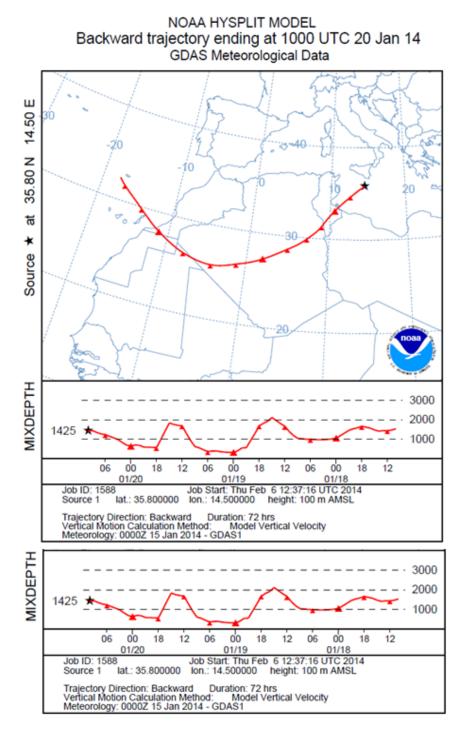



Figure 148: HYSPLIT backward trajectory at 100 m on the 20 January

The backward trajectory related to 100 meters level was from the Northern Atlantic zone, but along its path to the Maltese islands, it crossed the Saharan regions at levels quite near to the soil level. During the path toward Malta it decreased its quote. The mixdepth quote over Malta was higher than the arriving quote of this backward trajectory.



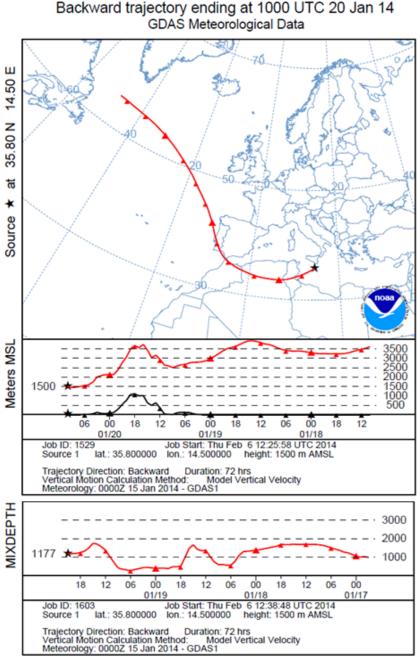



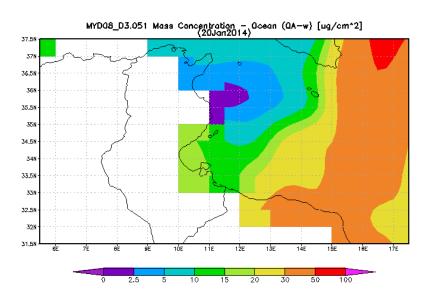

Figure 149: HYSPLIT backward trajectory at 500 m on the 20 January

The backward trajectory related to 500 meters level was from the North Atlantic and reached Malta through a path that crossed the Saharan regions (Algeria and Tunisia). During the path toward Malta it decreased its quote. The mixdepth quote over Malta was higher than the arriving quote of this backward trajectory.





NOAA HYSPLIT MODEL


Figure 150: HYSPLIT backward trajectory at 1500 m on the 20 January

The backward trajectory related to 1500 meters level was from North Atlantic zone and reached Malta through a path that crossed the Saharan regions (Moroco, Algeria and Tunisia). During the last hour of its path before reaching Malta it decreased its quote. The mixdepth quote over Malta was lower than the arriving quote of this backward trajectory.



#### **MODIS** sensors

The MODIS data available shows a quite highvalue referred to the presence of dust aerosols over Malta on the 20<sup>th</sup> of January 2013. Both the Aerosol optical depth and the mass concentration map show values significantly high which confirm the presence of dust aerosol. The zone near south Tunisia and Libya is the area with the highest results, referring to Malta, the results assume values in the average range.



MYD08\_D3.051 Aerosol Optical Depth at 550 nm [unitless] (20Jan2014)

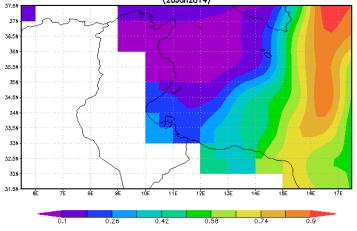



Figure 151: MODIS Terra and Aqua Level 3-Data on the 20 January



# • <u>30 January</u> AERONET images

The below images represent satellite images of 250m bands for Aqua and 250m bands for Terra.

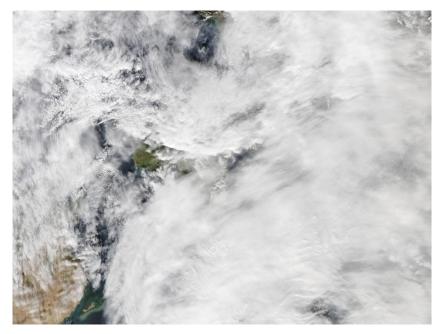



Figure 152: AERONET\_ETNA 250m \_AQUA




Figure 153: AERONET\_ETNA 250m \_TERRA

The above images do not provide clear information about the possible occurrence of a Saharan event due to the high clouds around the Maltese Islands.



## **BSC-DREAM dust model**

The figure below represents the BSC-DREAM prediction of total dust expressed in terms of lowest model level dust concentration (in  $\mu g/m^3$ ) and of dust load (in  $g/m^2$ ). The dust load is in size classes between 0.1 and 10  $\mu m$  over Europe at 12:00 UTC and 18.00 UTC, and superimposed on the same figure are the corresponding hourly forecasted wind vectors at 3000m height level.

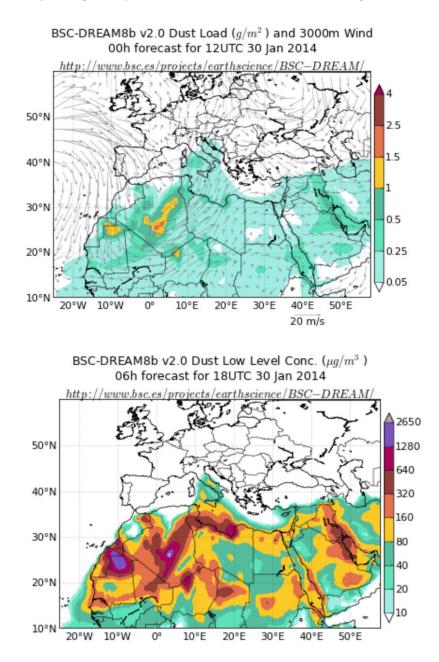



Figure 154: BSC-DREAM outputs on the 30 January

From the dust loading image above, it can be noted that on the 30<sup>th</sup> January a wind field coming from the North-Altantic sea area, descended towards the South and passed through Morocco, Algeria and Tunisia before reaching the Maltese islands.



The dust low level concentration image indicates high values all over the Saharan regions where the wind field passed through before reaching Malta.

Therefore, the BSC-DREAM output expressed in terms of dust concentration and dust deposition are quite consistent in showing that on 30<sup>th</sup> January, Malta was affected by a limited Saharan dust episode.

#### HYSPLIT model

The following figure shows the application of HYSPLIT on the Maltese islands on the 30<sup>th</sup> January. The HYSPLIT output is related to 22.00 UTC, defined as the moment of maximum peak of the possible dust event.

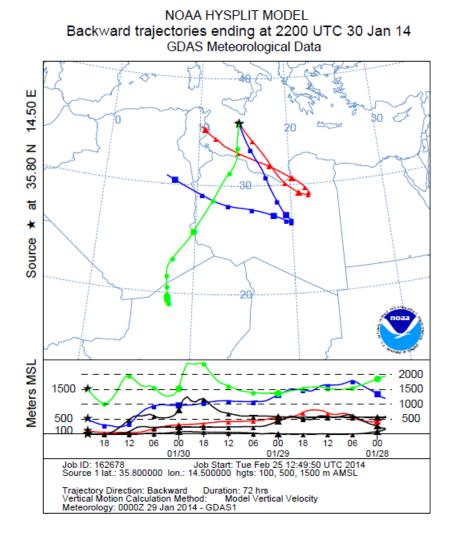



Figure 155 : HYSPLIT backward trajectory at 1500m. 500m and 100 m on the 30 January

The HYSPLIT model output, related to the conditions on the 30<sup>th</sup> January, shows that the backward trajectories ending over the air monitoring stations at the level of 100, 500 and 1500 meters above ground level are coming directly from Saharan regions.



The following figures show, for each backward trajectory, the variation of the parameters "Terrain height" and "Mixed layer depth", along the path. This information allows some further assessment about the probable intensity of the event at the arriving-point of this trajectory:

- a reduced distance from the backward trajectory level and the terrain height is considered to be an indicator of a higher intensity event, due to a major implication of the lower level of the atmosphere;
- the presence, along the path, of many points at which the trajectory level is above the mixed layer depth is considered an indicator of a possible decrease of the intensity of the dust aerosol, even if the trajectory being always under the mixed layer depth may be affected by higher level of dust deposition along the path, with minor intensity at the ending-point of the backward trajectory;
- a mixed layer depth higher than the ending-level of each backward trajectory is an indicator of a higher level of intensity of the event;

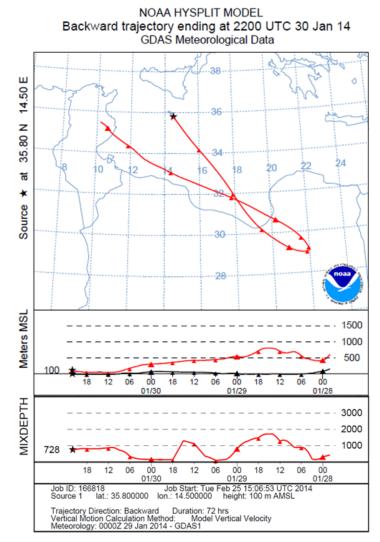



Figure 156: HYSPLIT backward trajectory at 100m on the 30 January



# AIR QUALITY MONITORING AT MARSAXLOKK AND BIRŻEBBUĠA

The backward trajectory at 100 meters above ground level, starts from Tunisia and then passes over the Libyan zone and turns back to Malta. The path of this trajectory passes in an area potentially affected by uplift of Saharan dust. The mixdepth quote over Malta was 728 meters, higher than the arriving quote of this backward trajectory.

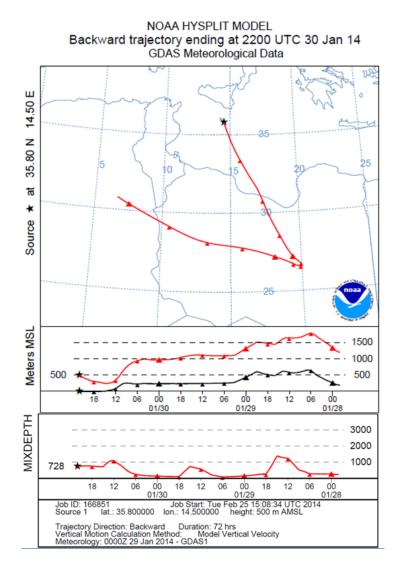
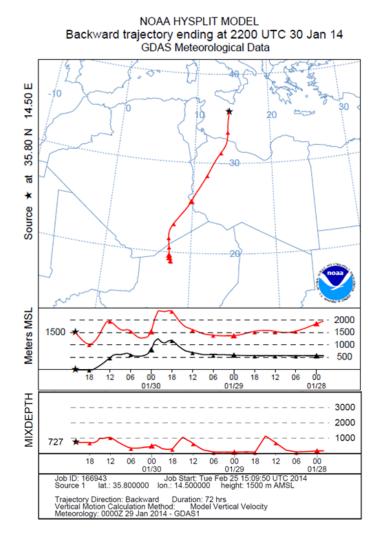
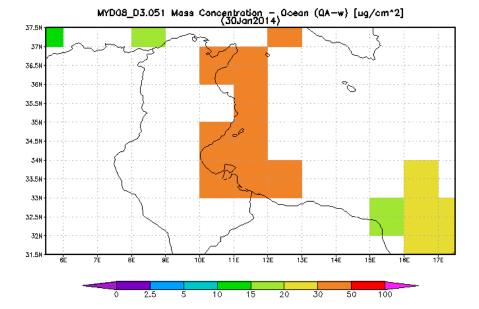



Figure 157: HYSPLIT backward trajectory at 500m on the 30 January

The backward trajectory at 500 meters above ground level came from Algeria and then crossed Libya before arriving to Malta. The mixdepth altitude over Malta was higher than the arriving quote of this backward trajectory.







Figure 158: HYSPLIT backward trajectory at 1500m on the 30 January

The backward trajectory at 1500 meters above ground level came from Saharan regions and reached directly the Maltese islands. This trajectory is compliant with the wind field calculated by BSC-DREAM model. The mixdepth quote over Malta was lower than the arriving quote of this backward trajectory.

#### **MODIS** sensors

The MODIS data available showed a quite high value referred to the presence of dust aerosols over Malta on 30<sup>th</sup> of January 2013. Both the Aerosol small mode and the mass concentration map show values significantly high that confirm the presence of dust aerosol.





MYD08\_D3.051 Aerosol Optical Depth at 550 nm [unitless]  $\langle 30Jan2014\rangle$ 37.5N 371 36.5N 36N °G 35.5N 35N 34.5N 34N 33.5N 33N 32.5N 32N 31.5N 7É 108 11E 12E 14E 15E 16E 17E 136 0.74 0.1 0.26 0.42 0.58 0.9

Figure 159: MODIS Terra and Aqua images on the 30 January



# • <u>31 January</u> AERONET images

The below images represent satellite images of 250m bands for Aqua and 250m bands for Terra.

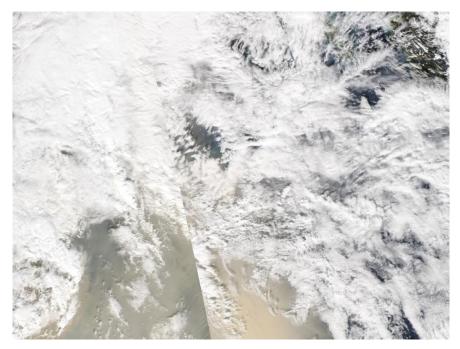



Figure 160: AERONET\_ETNA 250m \_AQUA

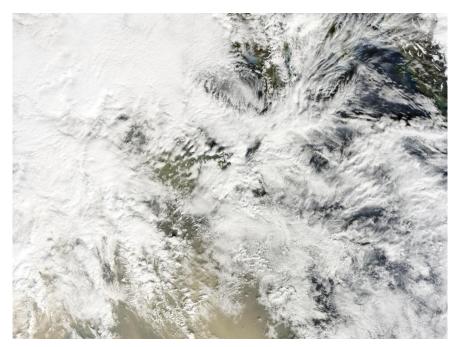



Figure 161: AERONET\_ETNA 250m \_TERRA

The above images do not provide clear information about the possible occurrence of a Saharan event due to the high clouds around the Maltese Islands



#### **BSC-DREAM dust model**

The figure below represents the BSC-DREAM prediction of total dust expressed in terms of lowest model level dust concentration (in  $\mu g/m^3$ ) and of dust load (in  $g/m^2$ ). The dust load is in size classes between 0.1 and 10  $\mu m$  over Europe at 12:00 UTC and 18.00 UTC, and superimposed on the same figure are the corresponding hourly forecasted wind vectors at 3000m height level.

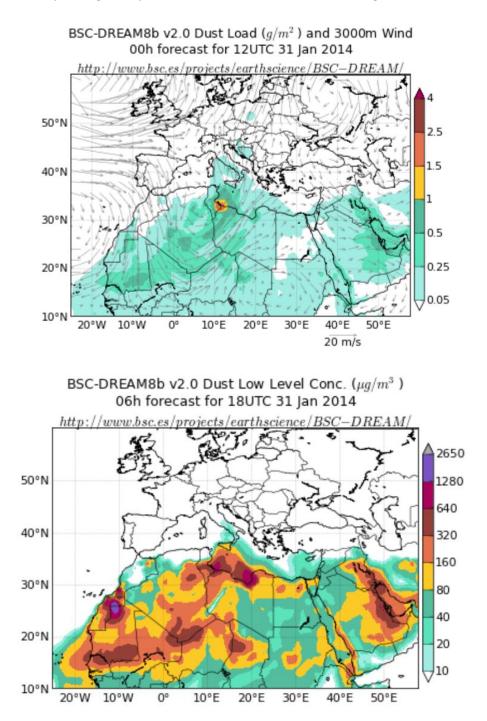



Figure 162: BSC-DREAM outputs on the 31 January



From the dust loading image above, it can be noted that on the 31<sup>st</sup> January, the wind field over Malta came from the Atlantic area before turning towards South and overpassing Algeria, Tunisia and Libya.

The dust concentration image confirms a dust loading along the path from Mauritania and Moroco to Italy, with a high peak over Central Tunisia and the coast of Libya. The concentration values indicates the strong intensity of a Saharan event, therefore, the BSC-DREAM output expressed in terms of dust concentration and dust deposition are consistent in showing that on the 31<sup>st</sup> January, Malta was affected by a Saharan dust episode.

#### HYSPLIT model

The following figure shows the application of HYSPLIT on the Maltese islands on the 31<sup>st</sup> of January. The HYSPLIT output is related to 14.00 UTC, defined as the moment of maximum peak of the possible dust event.

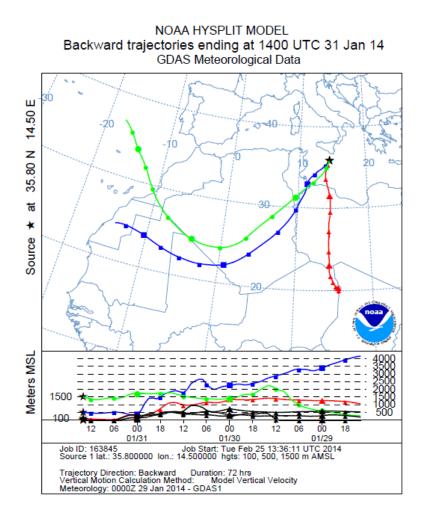



Figure 163 : HYSPLIT backward trajectory at 1500m. 500m and 100 m on the 31 January

The HYSPLIT model output related to the conditions on the 31<sup>st</sup> January shows that the backward trajectories ending over the air monitoring zone (Marsaxlokk and Birżebbuga) at the higher level of



1500, 500 and 100 meters above ground level, are directly from the Saharan region which indicates a possible dust load episode of high intensity over Malta.

The following figures show, for each backward trajectory, the variation of the parameters "Terrain height" and "Mixed layer depth", along the path. This information allows some further assessment about the probable intensity of the event at the arriving-point of this trajectory:

- a reduced distance from the backward trajectory level and the terrain height is considered to be an indicator of a higher intensity event, due to a major implication of the lower level of the atmosphere;
- the presence, along the path, of many points at which the trajectory level is above the mixed layer depth is considered an indicator of a possible decrease of the intensity of the dust aerosol, even if the trajectory being always under the mixed layer depth may be affected by higher level of dust deposition along the path, with minor intensity at the ending-point of the backward trajectory;
- a mixed layer depth higher than the ending-level of each backward trajectory is an indicator of a higher level of intensity of the event;



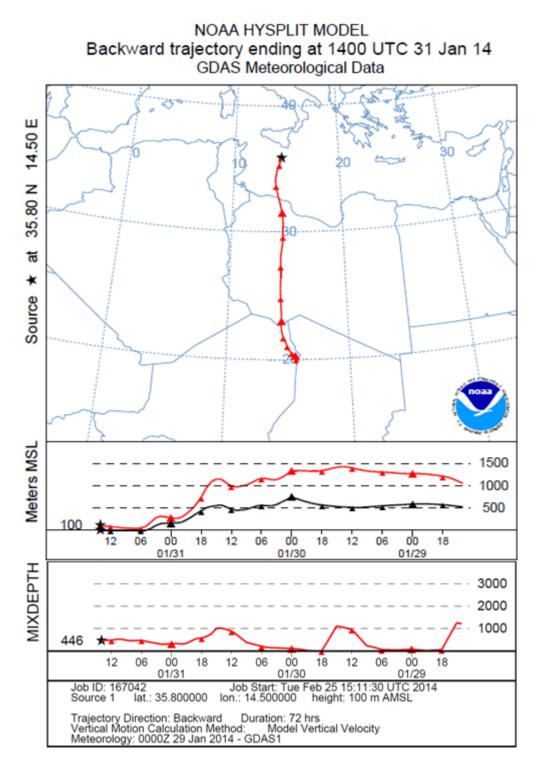



Figure 164: HYSPLIT backward trajectory at 100m on the 31 January

The backward trajectory at 100 meters above ground level came from Saharan region and reached Malta through a direct path over Libya. The mixdepth quote over Malta was, higher than the arriving quote of this backward trajectory.



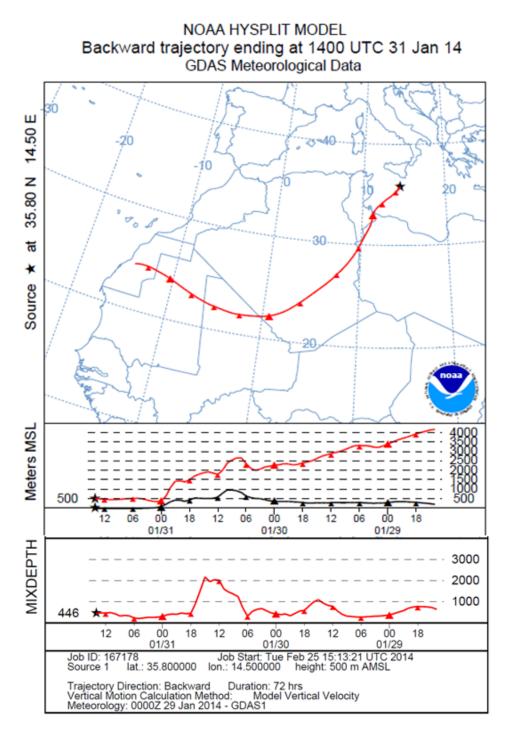
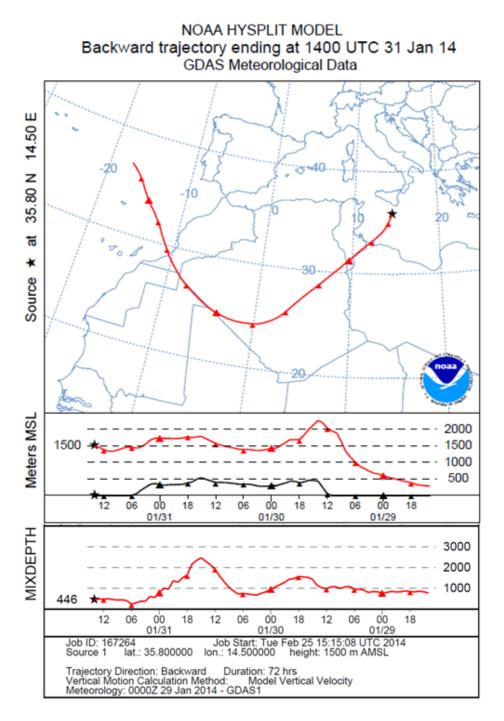
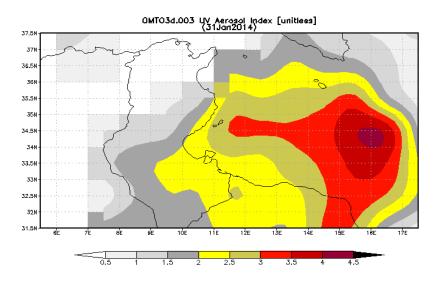



Figure 165: HYSPLIT backward trajectory at 500m on the 31 January

The backward trajectory at 500 m was coming from Saharan regions and the mixed layer depth over Malta on 31<sup>st</sup> January was 446 m, lower than this backward trajectory ending-point.







Figure 166: HYSPLIT backward trajectory at 1500m on the 31 January

The mixed layer depth was lower than the backward trajectory at 1500 meters. That shows a possible contribution to the dust load mainly related to the 100 and 500 m backward trajectories.



#### **MODIS** sensors

The MODIS data available shows that the UV Aerosol Index, Aerosol optical depth and the mass concentration map had values significantly high that confirm the presence of dust aerosol.



MYD08\_D3.051 Mass Concentration - Ocean (QA-w) [ug/cm^2] (31Jan2014) 37.5N 371 36.5 361 35.5 35M 34.51 34 33.5M 331 32.5 321 31.5N 116 1 2E 1.3E 14E 15E 30 2.510 15 20 50 100



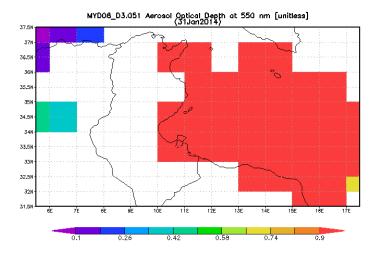



Figure 167: MODIS Terra and Aqua images on the 31 January

#### Conclusions

On the 18<sup>th</sup>, 19<sup>th</sup> and 20<sup>th</sup>, 30<sup>th</sup> and 31<sup>st</sup> of January the air monitoring ongoing at Birżebbuġa and Marsaxlokk stations recorded exceedances of the daily limit value of PM<sub>10</sub>.

The comparison with the other MEPA air monitoring data shows consistent exceedances of the daily limit value of PM10 in the other stations on all those days (the 4 MEPA station recorded excedeences on each day).

The satellite images over Malta indicated the presence of a distributed dust aerosol over and near Maltese islands on those days.

The mathematical model applications show that on the 18<sup>th</sup> ,19<sup>th</sup> ,20<sup>th</sup> of January the Saharan dust intrusions affected Malta.

The BSC-DREAM and HYSPLIT model outputs are very coherent and the wind-field calculated by BSC-DREAM model helped to better understand the backward trajectories outputs by indicating the origin of the Saharan episodes through the HYSPLIT model.

The satellite data analysis using the MODIS AOD550, SMF, Reff, Mass concentration and Angrstrom exponent values have confirmed the evaluations described above related to the presence of Saharan dust episodes.

The AERONET data retrived from the Lampedusa site showed that the three Saharan dust episode that affected Malta, passed over Lampedusa one day before being recorded in Malta.

In conclusion, the  $PM_{10}$ -exceedance at Birżebbuġa and Marsaxlokk during the  $18^{th}$ ,  $19^{th}$  and  $20^{th}$ ,  $30^{th}$  and  $31^{st}$  of January are attributed to a Saharan dust episode.



# 2.23. FEBRUARY

2.23.1. Analysis for the Identification of Saharan Dust

### Step 1: MEPA data analysis

The analysis of the air monitoring data during the period between the 1<sup>st</sup> and the 17<sup>th</sup> February 2014 determined the following exceedances:

- at Marsaxlokk site, exceedance of daily limit value of PM<sub>10</sub>, occurred on
  - ο February 1 daily concentration of 101.99  $\mu$ g/m<sup>3</sup> against daily limit value of 50.0  $\mu$ g/m<sup>3</sup>
  - ο February 10 daily concentration of 66.12  $\mu$ g/m<sup>3</sup> against daily limit value of 50.0  $\mu$ g/m<sup>3</sup>
  - ο February 20 daily concentration of 53.29  $\mu$ g/m<sup>3</sup> against daily limit value of 50.0  $\mu$ g/m<sup>3</sup>
- at Birżebbuġa site, exceedance of daily limit value of PM<sub>10</sub>, occurred on
  - ο February 1 daily concentration of 140.58  $\mu$ g/m<sup>3</sup> against daily limit value of 50.0  $\mu$ g/m<sup>3</sup>
  - ο February 10 daily concentration of 61.67  $\mu$ g/m<sup>3</sup> against daily limit value of 50.0  $\mu$ g/m<sup>3</sup>
  - ο February 20 daily concentration of 58.38  $\mu$ g/m<sup>3</sup> against daily limit value of 50.0  $\mu$ g/m<sup>3</sup>
  - $\circ~$  February 21 daily concentration of 53.44  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
  - 0

For the above days, the available information from MEPA air monitoring network was related to:

- Għarb station
- Msida station
- Żejtun station
- Kordin station



•

The PM<sub>10</sub> daily mean values were:

- Għarb station:
  - ο February 1 daily concentration of 106.38  $\mu$ g/m<sup>3</sup> against daily limit value of 50.0  $\mu$ g/m<sup>3</sup>
  - ο February 10 daily concentration of 22.72  $\mu$ g/m<sup>3</sup> against daily limit value of 50.0  $\mu$ g/m<sup>3</sup>
  - $\circ~$  February 21 daily concentration of 14.75  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
- Msida station:
  - ο February 1 daily concentration of 132.03  $\mu$ g/m<sup>3</sup> against daily limit value of 50.0  $\mu$ g/m<sup>3</sup>
  - ο February 10 daily concentration of 36.79  $\mu$ g/m<sup>3</sup> against daily limit value of 50.0  $\mu$ g/m<sup>3</sup>
  - $\circ~$  February 20 daily concentration of 43.52  $\mu g/m3$  against daily limit value of 50.0  $\mu g/m^3$
  - $\circ~$  February 21 daily concentration of 30.24  $\mu g/m3$  against daily limit value of 50.0  $\mu g/m^3$
- Żejtun station:
  - February 1 daily concentration of  $107.07 \mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
  - $\circ~$  February 10 daily concentration of 30.34  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
  - $\circ~$  February 20 daily concentration of 39.25  $\,\mu g/m3$  against daily limit value of 50.0  $\,\mu g/m3$
  - $\circ~$  February 21 daily concentration of 25.08  $\mu g/m3$  against daily limit value of 50.0  $\mu g/m^3$
- Kordin station:
  - $\circ~$  February 10 daily concentration of 27.06  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$



- ο February 20 daily concentration of 34.43  $\mu$ g/m3 against daily limit value of 50.0  $\mu$ g/m<sup>3</sup>
- ο February 21 daily concentration of 27.27  $\mu$ g/m3 against daily limit value of 50.0  $\mu$ g/m<sup>3</sup>

Enemalta air monitoring MEPA air monitoring network stations stations Date Marsaxlokk Birżebbuġa Għarb Msida Kordin Żejtun February 1 102.00 140.58 106.38 132.03 No Data 107.07 February 10 66.12 61.67 22.72 36.79 30.34 27.06 February 20 53.29 58.38 No Data 43.52 34.43 39.25 February 21 46.71 14.75 27.27 53.44 30.24 25.08

The following table summarizes the above information:

Table 60: PM<sub>10</sub> measurements on 1 and 10 February 2014

The following figure shows the above information:

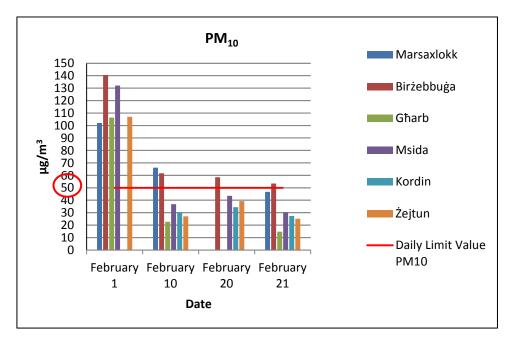



Figure 168: Air monitoring data plot on the days of exceedance

During the 1<sup>st</sup> of February, the four stations experienced an excedance of the Daily Limit value, which could indicate the possibility of a Saharan event.



During the 10<sup>th</sup> of February, none of the four MEPA monitoring stations experienced an exeedance of the Daily Limit value.

In order to assess whether or not a Saharan event took place, a detailed analysis was carried out based on the EU guidelines in Steps 2 and 3 below. Satellite images were evaluated and the mathematical model tools applied in order to reach a conclusion.

For setting up the model variables in Step 3, a PM<sub>10</sub> hourly concentration analysis was applied. This information is then used to best fit the modelling with HYSPLIT and run simulations at the specific hours that present the maximum probability of the eventual episode under investigation.

The following figure shows the variation of the  $PM_{10}$  hourly concentrations for the 1<sup>st</sup>, 10<sup>th</sup>, 20<sup>th</sup> and 21<sup>st</sup> of February 2014 at all the MEPA fixed stations.

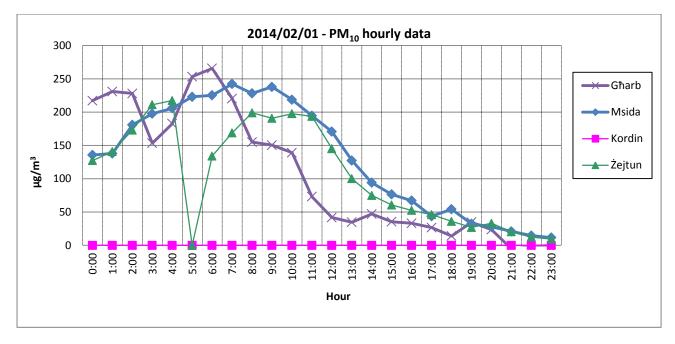



Figure 169:  $\ensuremath{\mathsf{PM}_{10}}$  hourly data for the 1 February

On the  $1^{st}$  of February the highest PM<sub>10</sub> concentrations were reached during the first hours of the day, between 0:00hrs and 0900hrs, decreasing gradually until 2300hrs. According to this data, the HYSPLIT model will be specified at 06.00 UTC (corresponding to 0700hrs in Malta), defined as the moment of maximum peak of the possible dust event.



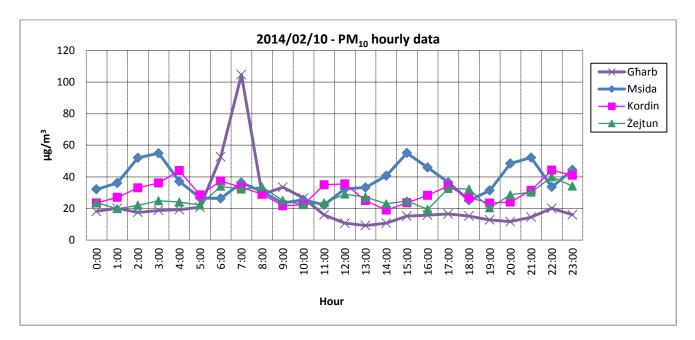



Figure 170: PM<sub>10</sub> hourly data for the 10 February

From the graph above, it can be seen that at all MEPA monitoring stations, the levels of  $PM_{10}$  were quite unfirm during the dat, except for Ghrab, which experience a striong  $PM_{10}$  concentration increase around 0700hrs. According this data, the HYSPLIT model will be specified at 6:00 UTC (corresponding to 0700hrs in Malta), defined as the moment of maximum peak of the possible dust event.

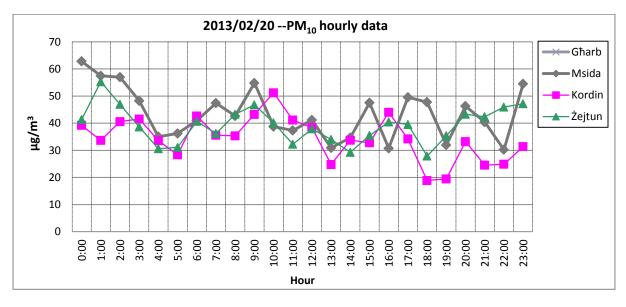



Figure 171: - PM<sub>10</sub> hourly data for the 20 February 2014

From the figure above, it can be concluded that on the  $20^{th}$  February there were not strong peaks for the PM<sub>10</sub> concentrations values during the day, the highest one occurred around 0100hrs. According to this data, the HYSPLIT model will be specified at 00.00 UTC (corresponding to 0100hrs in Malta), defined as the moment of maximum peak of the possible dust event.



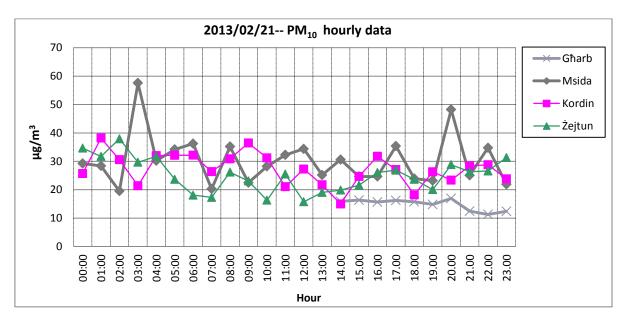



Figure 172: - PM<sub>10</sub> hourly data for the 21 February 2014

During the  $21^{st}$  of February there were two strong concentration peaks of PM<sub>10</sub> at Msida station. One around 0300hrs, and the second one at 2000hrs. According to this data, the HYSPLIT model will be specified at 00.00 UTC (corresponding to 0100hrs in Malta), defined as the moment of maximum peak of the possible dust event as the second concentration peak could be more easiy attributed to an episode of high traffic density.

### Step 2 – Satellite images

The exceedance in January has to be correlated with satellite imagery. The satellite images consulted were downloaded from the AERONET network which produces data available on the NASA website: http://rapidfire.sci.gsfc.nasa.gov/subsets/?subset=AERONET\_ETNA.

The below images represent satellite images of 250m bands for Aqua and 250m bands for Terra.

## Step 3 – Mathematical Modelling

The data available was analysed using the BSC-DREAM dust model (with concentration and deposition indicated) and HYSPLIT 4 model with a printout at heights of 100, 500 and 1500 metres above ground level, that show also mixing heights, taken over a period of 3 days prior to the day when the exceedance were recorded. BSC-DREAM dust model is helpful because it provides information not only on dust aerosols, but also because it provides the reconstruction of the wind field that is essential to better evaluate the HYSPLIT 4 model outputs. The BSC-DREAM outputs used are related to the Dust Loading (expressed in  $g/m^2$ ) and to the Lowest Level Dust Concentrations (expressed in  $\mu g/m^3$ ).



### Step 4 - Satellite data

In cases where satellite images and mathematical modelling outputs were not enough to verify whether on the identified day, Saharan dust episodes really took place, satellite data from three different instruments: the MODIS sensor and AERONET data were analysed for the identified day.

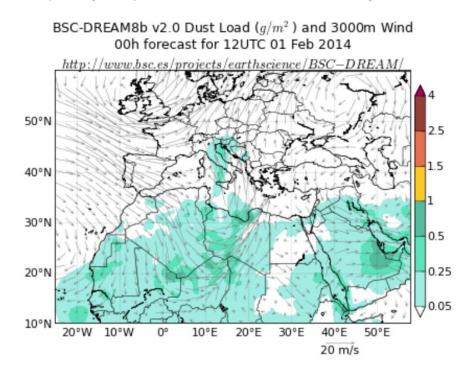
### • <u>1 February</u> AERONET images

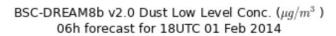
The below images represent satellite images of 250m bands for Aqua and 250m bands for Terra.

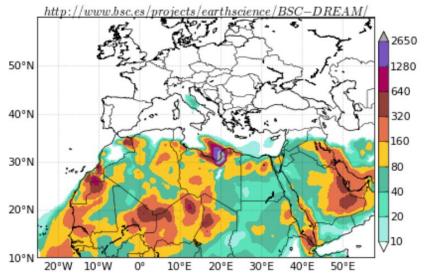



Figure 173: AERONET\_ETNA 250m \_AQUA




Figure 174: AERONET\_ETNA 250m \_TERRA


The above images do not provide clear information about the possible occurrence of a Saharan event due to the high cloudiness around the Maltese Islands.




#### **BSC-DREAM dust model**

The figure below represents the BSC-DREAM prediction of total dust expressed in terms of lowest model level dust concentration (in  $\mu g/m^3$ ) and of dust load (in  $g/m^2$ ). The dust load is in size classes between 0.1 and 10  $\mu m$  over Europe at 12:00 UTC and 18.00 UTC, and superimposed on the same figure are the corresponding hourly forecasted wind vectors at 3000m height level.











From the dust loading image it can be noted that on the 1<sup>st</sup> February, the wind field over Northern Africa and Central-Western Mediterranean was composed by wind vectors that followed a path from Atlantic area downward to Saharan regions in Morocco, Algeria, Tunisia and Libya, and then upwards to the Central Mediterranean area (the Maltese islands, Southern Italy and Balkan area).

The dust concentration image shows many areas affected by dust aerosol, some of them located between Morocco and Algeria, and others in the Southern-Central Mediterranean area, with higher values of dust concentrations along the Libyan coasts.

Therefore, the BSC-DREAM output expressed in terms of dust concentration and dust deposition are consistent in showing that on 1<sup>st</sup> February, Malta was affected by a Saharan dust episode.

#### **HYSPLIT** model

The following figure shows the application of HYSPLIT on the Maltese islands on the 1<sup>st</sup> February. The HYSPLIT output is related to 06.00 UTC, defined as the moment of maximum peak of the possible dust event.

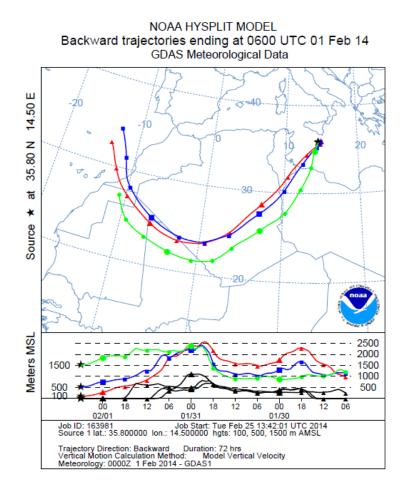



Figure 176 : HYSPLIT backward trajectory at 1500m. 500m and 100 m on the 1 February

The HYSPLIT model output related to the conditions on the 1<sup>st</sup> Febuary showed that the backward trajectory ending over the air monitoring zone (Marsaxlokk and Birżebbuga) at 1500,500 and 100



came directly from the Saharan region and are in perfectly according to the wind field from BSC-DREAM.

The following figures show, for each backward trajectory, the variation of the parameters "Terrain height" and "Mixed layer depth", along the path. This information allows some further assessment about the probable intensity of the event at the arriving-point of this trajectory:



The mixed layer depth over Malta on the 1<sup>st</sup> February was 170m, which is higher than the endinglevel of the 100m backward trajectory.

- a reduced distance from the backward trajectory level and the terrain height is considered to be an indicator of a higher intensity event, due to a major implication of the lower level of the atmosphere;
- the presence, along the path, of many points at which the trajectory level is above the mixed layer depth is considered an indicator of a possible decrease of the intensity of the dust aerosol, even if the trajectory being always under the mixed layer depth may be affected by higher level of dust deposition along the path, with minor intensity at the ending-point of the backward trajectory;
- a mixed layer depth higher than the ending-level of each backward trajectory is an indicator of a higher level of intensity of the event;

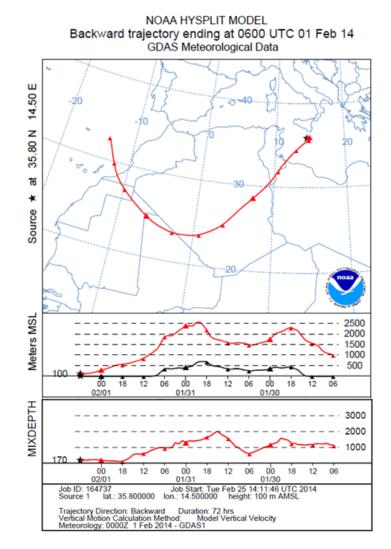



Figure 177: HYSPLIT backward trajectory at 100m on the 1 February



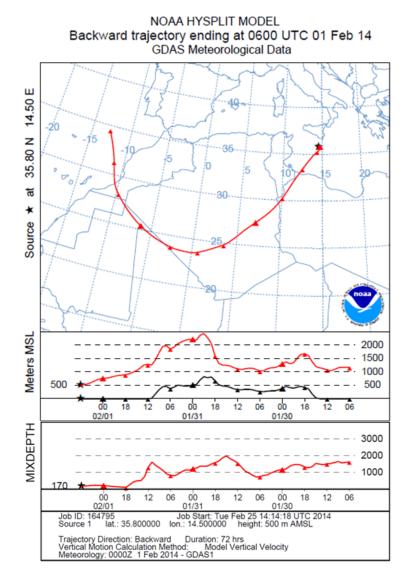



Figure 178: HYSPLIT backward trajectory at 500m on the 1 February

The mixed layer depth was lower than the ending-level of the 500 m backward trajectory.



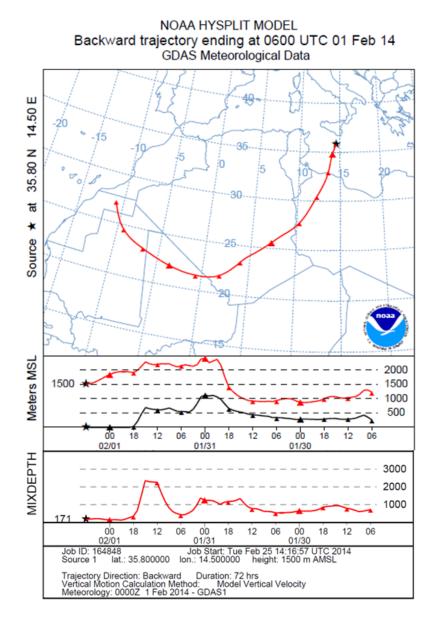



Figure 179: HYSPLIT backward trajectory at 1500m on the 1 February

The mixed layer depth was lower than the ending-level of the 1500 m backward trajectory.



#### **MODIS** sensors

The MODIS data available for the 1<sup>st</sup> of February 2014 does not show clear information about the possible presence of dust aerosol.

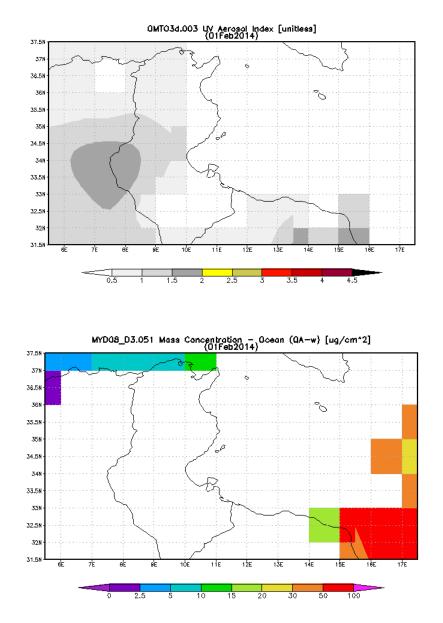



Figure 180: MODIS Terra and Aqua images on the 1 February.

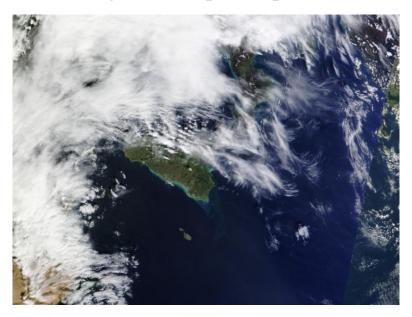


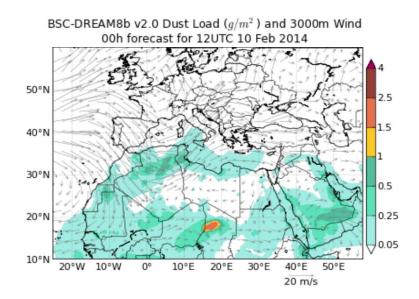
# • <u>10 February</u> AERONET images

The below images represent satellite images of 250m bands for Aqua and 250m bands for Terra.



Figure 181: AERONET\_ETNA 250m \_AQUA





Figure 182: AERONET\_ETNA 250m \_TERRA

The above images do not provide clear information about the possible occurrence of a Saharan event due to the high clouds around the Maltese Islands.



### **BSC-DREAM dust model**

The figure below represents the BSC-DREAM prediction of total dust expressed in terms of lowest model level dust concentration (in  $\mu g/m^3$ ) and of dust load (in  $g/m^2$ ). The dust load is in size classes between 0.1 and 10  $\mu$ m over Europe at 12:00 UTC and 18.00 UTC, and superimposed on the same figure are the corresponding hourly forecasted wind vectors at 3000m height level.



BSC-DREAM8b v2.0 Dust Low Level Conc. ( $\mu g/m^3$ ) 06h forecast for 18UTC 10 Feb 2014

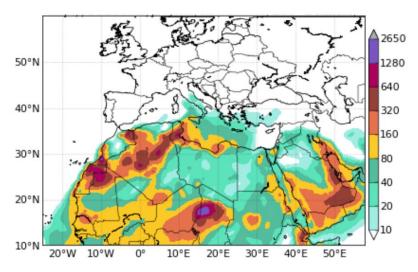



Figure 183: BSC-DREAM outputs on the 10 February

From the dust loading image it can be noted that on the 10<sup>th</sup> February, the wind field over Central Mediterranean was composed by wind vectors that followed a path from Northern Atlantic area downward to Saharan regions in Morocco, Algeria, Tunisia and Libya, and then directly upwards to Central Mediterranean area (the Maltese islands and Southern Italy).



The dust concentration image shows a dust aerosol from Moroco till the sourth of Italy related to the above wind field.

Therefore, the BSC-DREAM output expressed in terms of dust concentration and dust deposition are very consistent in showing that on 10<sup>th</sup> February, Malta was affected by a Saharan dust episode.

#### **HYSPLIT** model

The following figure shows the application of HYSPLIT on the Maltese islands on the 10<sup>th</sup> February. The HYSPLIT output is related to 06.00 UTC, defined as the moment of maximum peak of the possible dust event.

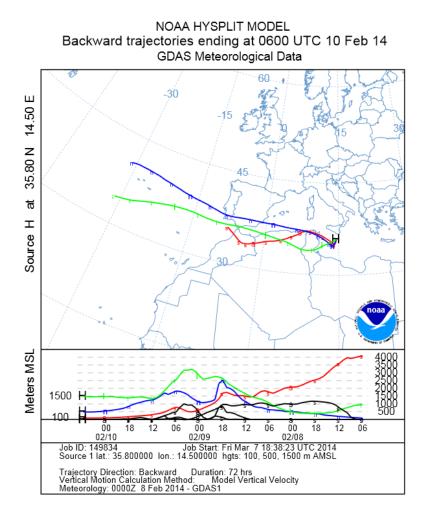



Figure 184 : HYSPLIT backward trajectory at 1500m, 500m and 100 m on the 10 February

The HYSPLIT model output related to the conditions on the 10<sup>th</sup> February shows that the backward trajectories ending over the air monitoring zone (Marsaxlokk and Birzebbuga) at the level of 100 and 1500 meters above ground level are from Saharan region (Morocco, Algeria and Tunisia) and follow a path directly from this region to the Maltese islands (without any vortex trajectory). A direct path from Saharan region can be related to a significant increase in dust concentrations. The backward trajectory at 100 m and 1500 are well according to the BSC-DREAM output.



The following figures show, for each backward trajectory, the variation of the parameters "Terrain height" along the path. This information allows some further assessment about the probable intensity of the event at the arriving-point of this trajectory:

- a reduced distance from the backward trajectory level and the terrain height is considered to be an indicator of a higher intensity event, due to a major implication of the lower level of the atmosphere;
- the presence, along the path, of many points at which the trajectory level is above the mixed layer depth is considered an indicator of a possible decrease of the intensity of the dust aerosol, even if the trajectory being always under the mixed layer depth may be affected by higher level of dust deposition along the path, with minor intensity at the ending-point of the backward trajectory;
- a mixed layer depth higher than the ending-level of each backward trajectory is an indicator of a higher level of intensity of the event;



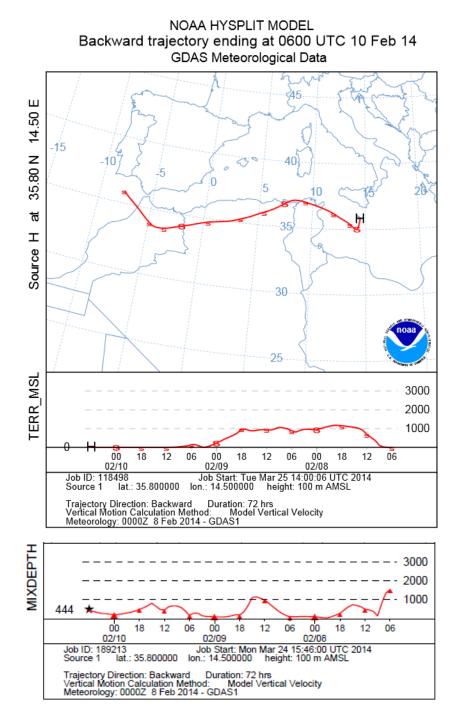
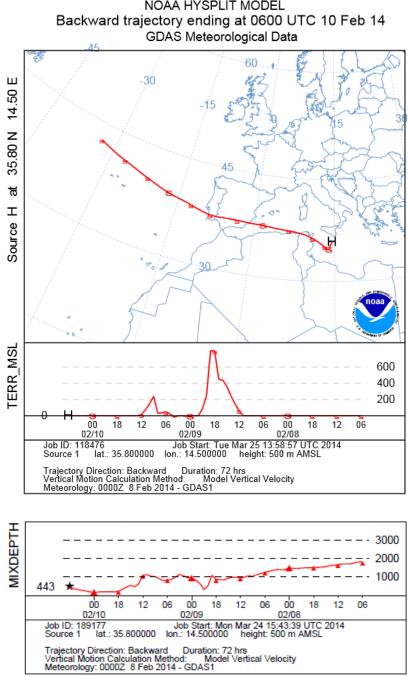
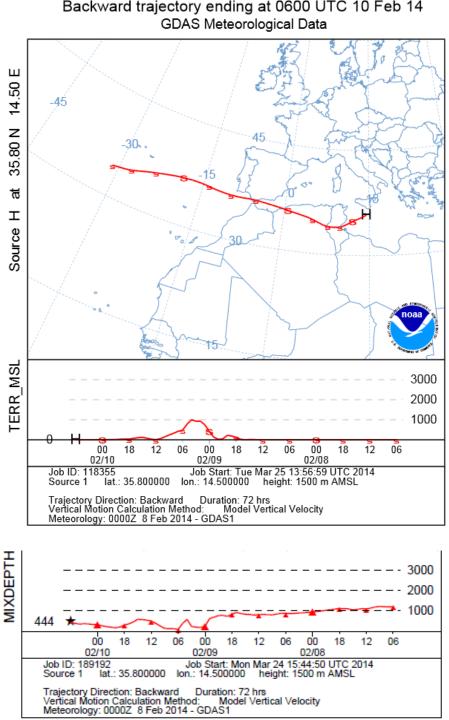




Figure 185: HYSPLIT backward trajectory at 100m on the 10 February

The backward trajectory at 100 meters above ground level is from Atlantic area and reaches Malta through a path that before arriving to Malta passed over Algeria, Tunisia and Mediterranean.






NOAA HYSPLIT MODEL

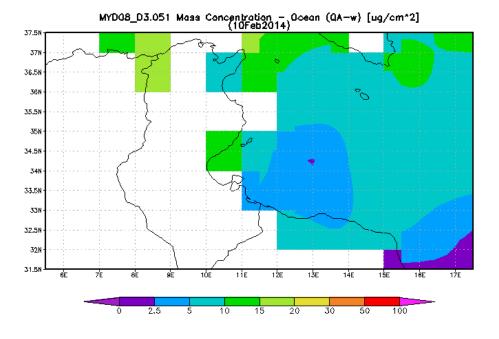
Figure 186: HYSPLIT backward trajectory at 500m on the 10 February

The backward trajectory at 500 meters above ground level is from the North Atlantic and after crossing Portugal, Spain and the south-west Mediterranean area, arrives in Malta. This backward trajectory crosses an area which is potentially a source of dust aerosols over a limited area close to the Tunisian coasts.





NOAA HYSPLIT MODEL Backward trajectory ending at 0600 UTC 10 Feb 14


Figure 187: HYSPLIT backward trajectory at 1500m on the 10 February

The backward trajectory at the 1500 metes level was characterized by two main direction: the first one from Atlantic area downwards to Central Algeria and the second one from Algeria directly to the Maltese islands.



### **MODIS** sensors

The MODIS data available does not confirm the presence of a Saharan dust aerosol over Malta on the  $10^{th}$  February. In particular, the following figures show medium values of Small Mode Fraction (between 0.04 and 0.50 µg/cm<sup>2</sup>) and of Mass Concentration (between 5 and 10 µg/cm<sup>2</sup>).



MYD08\_D3.051 Aerosol Small Mode Fraction Ocean [unitless] {10Feb2014}

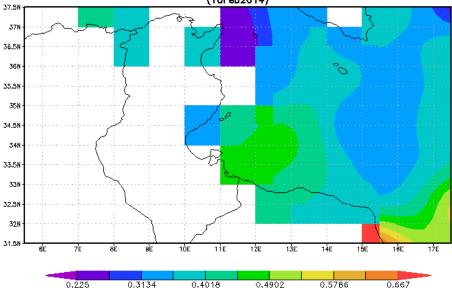



Figure 188: MODIS Terra and Aqua images on the 10 February



# • <u>20 February</u> AERONET images

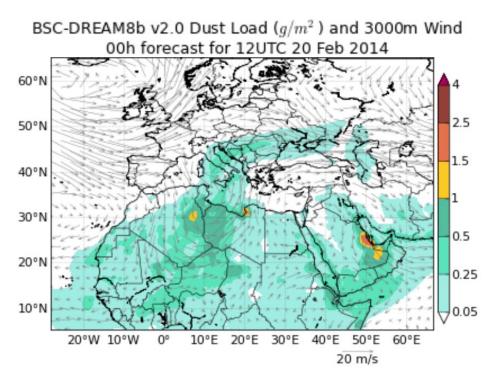
The below images represent satellite images of 250m bands for Aqua and 250m bands for Terra.



Figure 189: AERONET\_ETNA 250m \_AQUA



Figure 190: AERONET\_ETNA 250m \_TERRA


The above images do not provide clear information about the possible occurrence of a Saharan event due to the high cloudiness around the Maltese Islands.

### **BSC-DREAM dust model**

The figure below represents the BSC-DREAM prediction of total dust expressed in terms of lowest model level dust concentration (in  $\mu g/m^3$ ) and of dust load (in  $g/m^2$ ). The dust load is in size classes



between 0.1 and 10  $\mu m$  over Europe at 12:00 UTC and 18.00 UTC, and superimposed on the same figure are the corresponding hourly forecasted wind vectors at 3000m height level.



BSC-DREAM8b v2.0 Dust Low Level Conc. ( $\mu g/m^3$ ) 06h forecast for 18UTC 20 Feb 2014

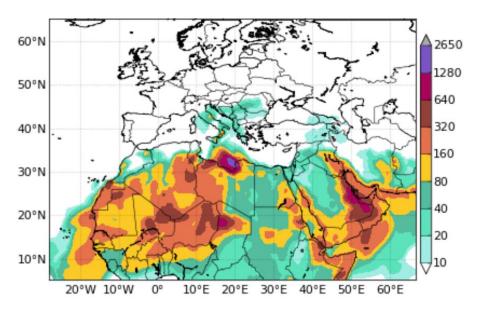
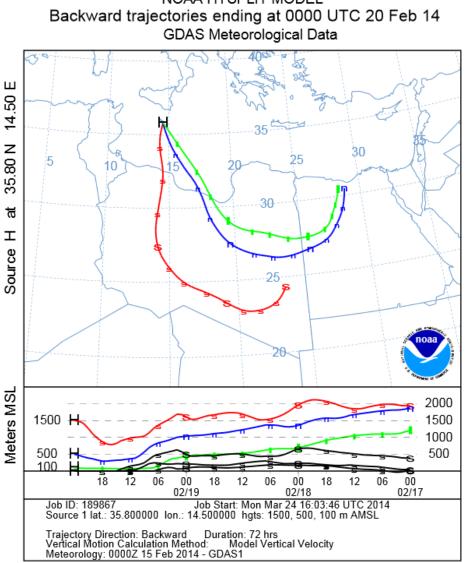



Figure 191: BSC-DREAM outputs on the 20 February.



From the dust loading image it can be noted that on the 20<sup>th</sup> February the main wind vectors originated at the Atlantic area, passed through Spain and then swifted towards the south overpassing Algeria, Tunisia and Lybia before reaching Malta and continuying towards the Balkans.


The dust concentration image shows a dust loading peak over the Libyan coasts with a contribution towards the Maltese islands.

Therefore, the BSC-DREAM output expressed in terms of dust concentration and dust deposition are consistent in showing that on the 20<sup>th</sup> February, Malta was affected by a limited Saharan dust episode.

### HYSPLIT model

The following figure shows the application of HYSPLIT on the Maltese islands on the 20<sup>th</sup> of February. The HYSPLIT output is related to, defined as the moment of maximum peak of the possible dust event.





NOAA HYSPLIT MODEL

Figure 192 : HYSPLIT backward trajectory at 1500m, 500m and 100 m on the 20 February

The HYSPLIT model output related to the conditions on the 20<sup>th</sup> of Febuary showed that the backward trajectory ending over the air monitoring zone (Marsaxlokk and Birżebbuga) at 1500, 500 and 100 meters above ground level came directly from the Saharan region and are in accordance with the wind field from BSC-DREAM.

The following figures show, for each backward trajectory, the variation of the parameters "Terrain height" and "Mixed layer depth", along the path. This information allows some further assessment about the probable intensity of the event at the arriving-point of this trajectory:



- a reduced distance from the backward trajectory level and the terrain height is considered to be an indicator of a higher intensity event, due to a major implication of the lower level of the atmosphere;
- the presence, along the path, of many points at which the trajectory level is above the mixed layer depth is considered an indicator of a possible decrease of the intensity of the dust aerosol, even if the trajectory being always under the mixed layer depth may be affected by higher level of dust deposition along the path, with minor intensity at the ending-point of the backward trajectory;
- a mixed layer depth higher than the ending-level of each backward trajectory is an indicator of a higher level of intensity of the event;

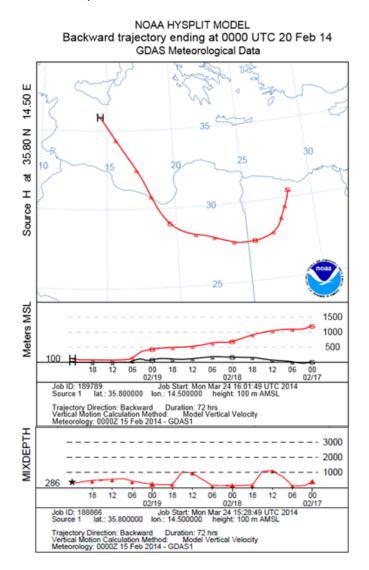



Figure 193: HYSPLIT backward trajectory at 100m on the 20 February

The backward trajectory at 100 meters above ground level is from Egypt and Southern-Eastern Libya. The mixdepth over Malta was higher than the arriving quote of this backward trajectory.



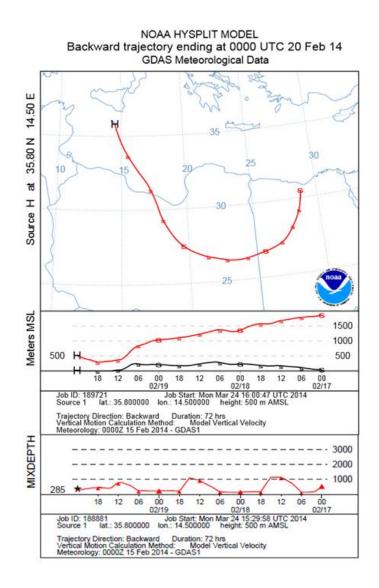
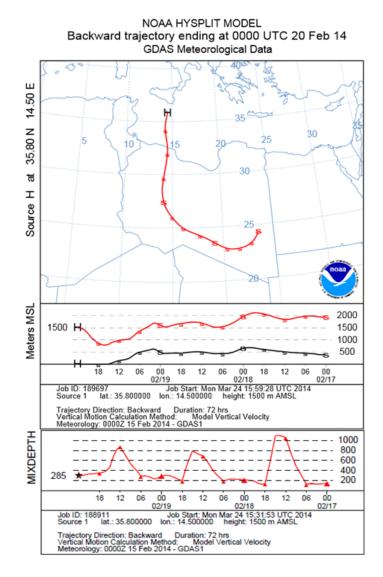
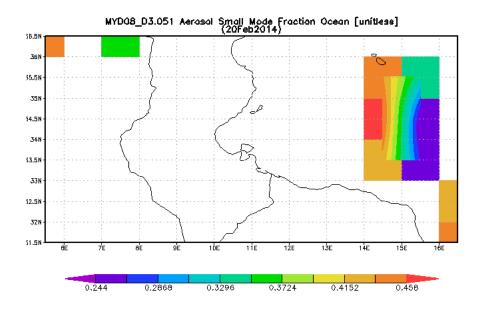



Figure 194: HYSPLIT backward trajectory at 500m on the 20 February

The backward trajectory at 500 meters above ground level is from Egypt and Southern-Eastern Libya. The mixdepth over Malta was lower than the arriving quote of this backward trajectory.







Figure 195: HYSPLIT backward trajectory at 1500m on the 20 February

The backward trajectory at 1500 meters above ground level is from Southern Libya and the mixdepth quote over the passed areas is always lower than the trajectory's quote.

#### **MODIS** sensors

The MODIS data available does confirm the possible presence of a Saharan dust aerosol over Malta on the  $20^{th}$  February. In particular, the following figures show medium values of Aerosol Small Mode Fraction (between 0.04 and 0.50) and of Mass Concentration (between 20 and 30 µg/cm<sup>2</sup>).





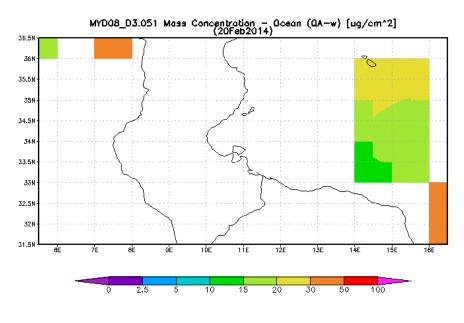



Figure 196: MODIS Terra and Aqua images on the 20 February.

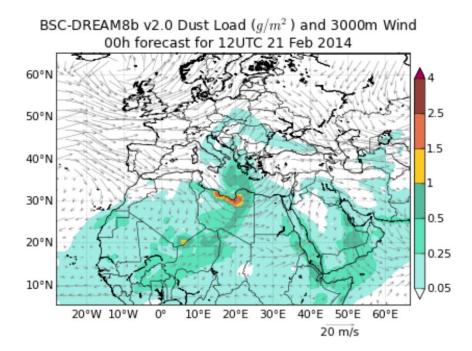


## • <u>21 February</u> AERONET images

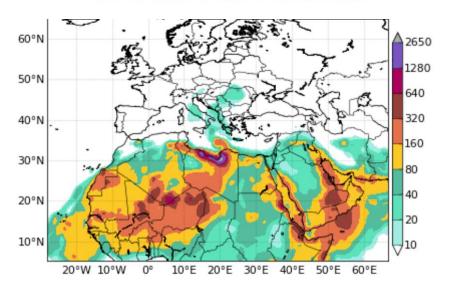
The below images represent satellite images of 250m bands for Aqua and 250m bands for Terra.

Figure 197: AERONET\_ETNA 250m \_AQUA




Figure 198: AERONET\_ETNA 250m \_TERRA

The above images do not provide clear information about the possible occurrence of a Saharan event.




#### **BSC-DREAM dust model**

The figure below represents the BSC-DREAM prediction of total dust expressed in terms of lowest model level dust concentration (in  $\mu g/m^3$ ) and of dust load (in  $g/m^2$ ). The dust load is in size classes between 0.1 and 10  $\mu m$  over Europe at 12:00 UTC and 18.00 UTC, and superimposed on the same figure are the corresponding hourly forecasted wind vectors at 3000m height level.



BSC-DREAM8b v2.0 Dust Low Level Conc. ( $\mu g/m^3$ ) 00h forecast for 12UTC 21 Feb 2014







From the dust loading image it can be noted that on the 21<sup>st</sup> February, the wind field over Malta was mainly from Antlantic zone and not from Saharan region.

The dust concentration image shows that Malta on that day was not influenced by dust loading from Saharan region that appears confined in the North-Western side of Africa. Therefore, the BSC-DREAM output expressed in terms of dust concentration and dust deposition are consistent in showing that on 21<sup>th</sup> February, Malta was not affected by a Saharan dust episode.

#### HYSPLIT model

The following figure shows the application of HYSPLIT on the Maltese islands on the 21<sup>st</sup> February. The HYSPLIT output is related to 06.00 UTC, defined as the moment of maximum peak of the possible dust event.

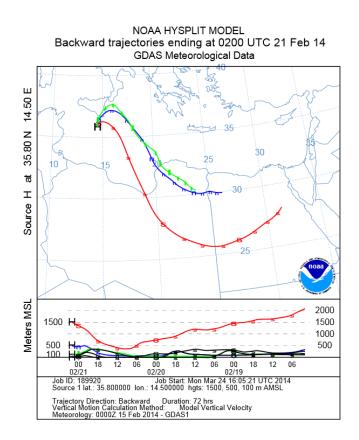



Figure 200 : HYSPLIT backward trajectory at 1500m, 500m and 100 m on the 21 February

The HYSPLIT model output related to the conditions on the 21<sup>st</sup> February shows that the backward trajectory ending over the air monitoring zone (Marsaxlokk and Birżebbuġa) at the level of 1500, 500 and 100 meters above ground level are from the Saharan region (Libya) which is not in accordance to the wind field from BSC-DREAM.



The following figures show, for each backward trajectory, the variation of the parameters "Terrain height" along the path. This information allows some further assessment about the probable intensity of the event at the arriving-point of this trajectory:

- a reduced distance from the backward trajectory level and the terrain height is considered to be an indicator of a higher intensity event, due to a major implication of the lower level of the atmosphere;
- the presence, along the path, of many points at which the trajectory level is above the mixed layer depth is considered an indicator of a possible decrease of the intensity of the dust aerosol, even if the trajectory being always under the mixed layer depth may be affected by higher level of dust deposition along the path, with minor intensity at the ending-point of the backward trajectory;
- a mixed layer depth higher than the ending-level of each backward trajectory is an indicator of a higher level of intensity of the event;

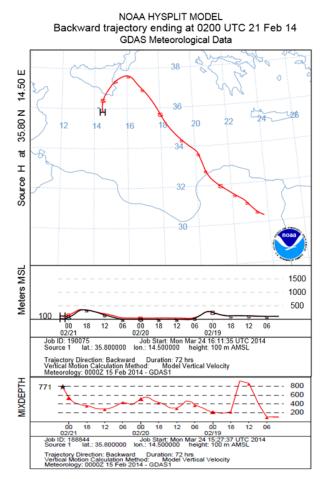



Figure 201: HYSPLIT backward trajectory at 100m on the 21 February

The backward trajectory related to 100 meters level was directly from Saharan region. The mixdepth quote over Malta was higher than the arriving quote of this backward trajectory.



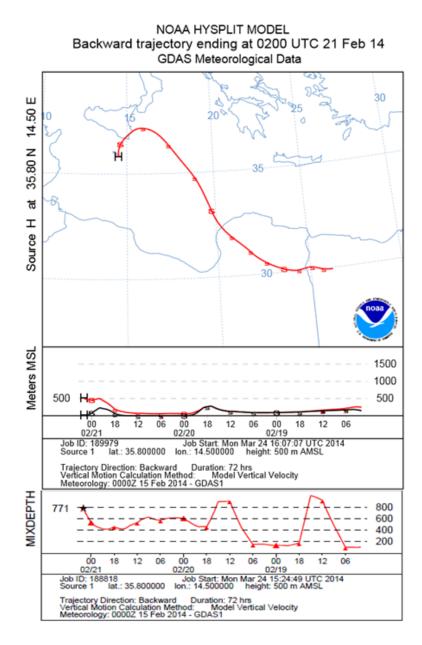
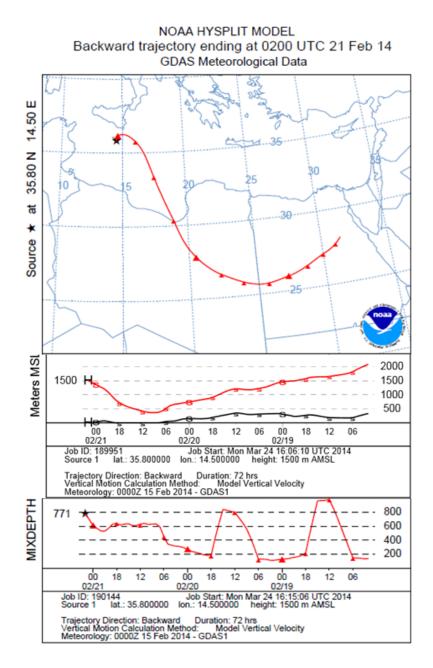
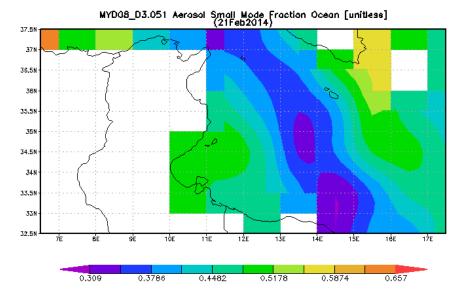



Figure 202: HYSPLIT backward trajectory at 500m on the 21 February

The backward trajectory related to 500 meters level was directly from Saharan region. The mixdepth quote over Malta was higher than the arriving quote of this backward trajectory.







Figure 203: HYSPLIT backward trajectory at 1500m on the 21 February

The backward trajectory related to 1500 meters level across the Libyan desert and Egypt. The mixdepth quote over Malta was lower than the arriving quote of this backward trajectory. From this data we could conclude that the backwards trajectory related to 500 meters and 100 meters above ground had a strongest influence on the dust concentration over the monitoring stations than the backward trajectory of 1500 meters, as their arriving quote were lower than the mixdepth quote and there was a reduced distance to the the terrain height.



#### **MODIS** sensors

The MODIS data available does not confirm the presence of a Saharan dust aerosol over Malta on the 21<sup>st</sup> February. In particular, the following figures show medium values of Aerosol Small Mode Fraction (between 0.04 and 0.50) and of Mass Concentration (between 10 and 15  $\mu$ g/cm<sup>2</sup>).



37.51 37 36,51 36N 35.5N 351 34.51 34N 33.51 331 32.51 11E 10E 1ŻE 13E 14E 15E 16E 17E 30 2.510 15 20 50 100 5

MYD08\_D3.051 Mass Concentration - Ocean (QA-w) [ug/cm^2] (21Feb2014)





#### Conclusions

During the  $1^{st}$ ,  $10^{th}$   $20^{th}$  and  $21^{st}$  February, the air monitoring going on at Marsaxlokk and Birżebbuġa recorded exceedances of the daily limit value of 50 µg/m<sup>3</sup> for PM<sub>10</sub>. The comparison with the other MEPA air monitoring data showed that all monitoring stations also registered an exceedance of the daily limit value of PM<sub>10</sub> during the  $1^{st}$  but not during the  $10^{th}$ ,  $20^{th}$  and  $21^{st}$ 

The BSC-DREAM outputs showed that during the 1<sup>st</sup> and 10<sup>th</sup> of February, a wind field from Atlantic area that reached Malta through a path that crossed the Saharan regions (Morocco, Algeria, Tunisia and Libya), during the 21<sup>st</sup> of February Malta was influenced by a dust loading from Saharan region of limited intensity although not during the 20<sup>th</sup>.

HYSPLIT model outputs, taken over a period of 3 days prior the single analyzed day, showed that during the 1<sup>st</sup> and 10<sup>th</sup> February a wind field from Atlantic area reached Malta through a path that crossed the Saharan regions (Morocco, Algeria, Tunisia and Libya). All the HYSPLIT model outputs related to the conditions on the 20<sup>th</sup> and 21<sup>st</sup> February showed backward trajectories ending over Marsaxlokk and Birżebbuga at several height levels originating at Saharan regions.

In conclusion, the  $PM_{10}$ -exceedances at Marsaxlokk and Birzebbuga on the  $1^{st}$  and  $10^{th}$  February could have been influenced by a Saharan dust episode. The interpretation of the analyzed data for  $21^{st}$  February is slightly complex, because the sources consulted were not totally coherent, however given the model outputs, it is being concluded that on the  $21^{st}$  February, Malta was affected by a Saharan dust episode of limited intensity as well as on the  $20^{th}$  February. The low dust values of this episode were probably due to the whirling path of the wind vortices that led the dust load over the Maltese Islands.



#### 2.24. MARCH

#### 2.24.1. Analysis for the Identification of Saharan Dust

#### Step 1: MEPA data analysis

The analysis of the air monitoring data during the period between the 5<sup>th</sup> March and the 19<sup>th</sup> March 2014 determined the following exceedances:

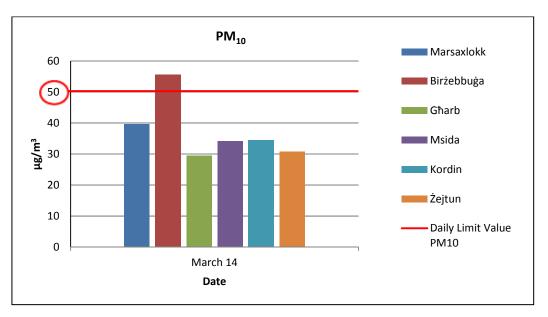
- at Birżebbuġa site, exceedance of daily limit value of PM10, occurred on
  - $\circ$  March 14 daily concentration of 55.7 µg/m<sup>3</sup> against daily limit value of 50.0 µg/m<sup>3</sup>

For the above day, the available information from MEPA air monitoring network was related to:

- Għarb station
- Msida station
- Żejtun station
- Kordin station

The PM<sub>10</sub> daily mean values were:

- Għarb station:
  - $\circ~$  March 14 ~ daily concentration of 29.38  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
- Msida station:
  - $\circ$  March 14 daily concentration of 34.1  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
- Żejtun station:
  - $\circ~$  March 14 ~ daily concentration of 30.73  $\mu g/m^3$  against daily limit value of 50.0  $\mu g/m^3$
- Kordin station
  - ο March 14 daily concentration of 34.36  $\mu$ g/m<sup>3</sup> against daily limit value of 50.0  $\mu$ g/m<sup>3</sup>


The following table summarizes the above information:

| Date     | Enemalta air r<br>stations | nonitoring | MEPA air monitoring network stations |       |        |        |  |  |
|----------|----------------------------|------------|--------------------------------------|-------|--------|--------|--|--|
|          | Marsaxlokk                 | Birżebbuġa | Għarb                                | Msida | Kordin | Żejtun |  |  |
| 14 March | 39.56                      | 55.47      | 29.38                                | 34.1  | 34.36  | 30.73  |  |  |

Table 61: PM<sub>10</sub> measurements on the 14 March 2014







The following figure shows the above information:

Figure 205: Air monitoring data plot on the days of exceedance

During the 14<sup>th</sup> of March none of the four stations experienced an exeedance of the Daily Limit value.

In order to assess whether or not a Saharan event took place, a detailed analysis was carried out based on the EU guidelines in Steps 2 and 3 below. Satellite images were evaluated and the mathematical model tools applied in order to reach a conclusion.

For setting up the model variables in Step 3, a PM<sub>10</sub> hourly concentration analysis was applied. This information is then used to best fit the modelling with HYSPLIT and run simulations at the specific hours that present the maximum probability of the eventual episode under investigation.

The following figure shows the variation of the  $PM_{10}$  hourly concentrations for the 14<sup>th</sup> of March atall the MEPA fixed stations.



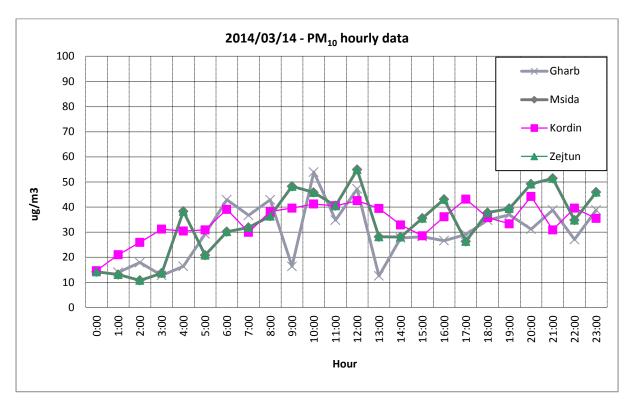



Figure 206: PM<sub>10</sub> hourly data for the 14 March

From the graph above, it can be seen that the levels of  $PM_{10}$  were below the daily limit value during the entire day except between 1000hrs and1200hrs at Gharb and Msida stations. According this data, the HYSPLIT model will be specified at 11:00 UTC (corresponding to 1200hrs in Malta), defined as the moment of maximum peak of the possible dust event.

#### Step 2 – Satellite images

The exceedance in January has to be correlated with satellite imagery. The satellite images consulted were downloaded from the AERONET network which produces data available on the NASA website: http://rapidfire.sci.gsfc.nasa.gov/subsets/?subset=AERONET\_ETNA.

The below images represent satellite images of 250m bands for Aqua and 250m bands for Terra.

#### Step 3 – Mathematical Modelling

The data available was analysed using the BSC-DREAM dust model (with concentration and deposition indicated) and HYSPLIT 4 model with a printout at heights of 100, 500 and 1500 metres above ground level, that show also mixing heights, taken over a period of 3 days prior to the day when the exceedance were recorded. BSC-DREAM dust model is helpful because it provides information not only on dust aerosols, but also because it provides the reconstruction of the wind field that is essential to better evaluate the HYSPLIT 4 model outputs. The BSC-DREAM outputs used are related to the Dust Loading (expressed in  $g/m^2$ ) and to the Lowest Level Dust Concentrations (expressed in  $\mu g/m^3$ ).



#### Step 4 - Satellite data

In cases where satellite images and mathematical modelling outputs were not enough to verify whether on the identified day, Saharan dust episodes really took place, satellite data from three different instruments: the MODIS sensor and AERONET data were analysed for the identified day.

#### • <u>14 March</u> AERONET images

The below images represent satellite images of 250m bands for Aqua and 250m bands for Terra.

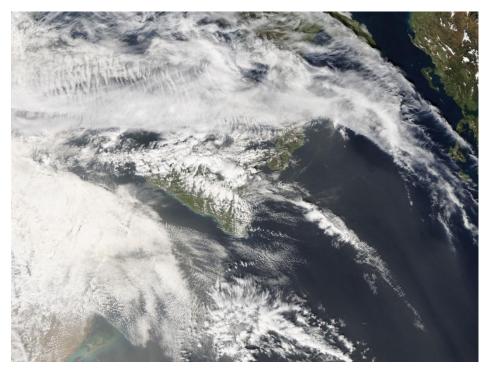
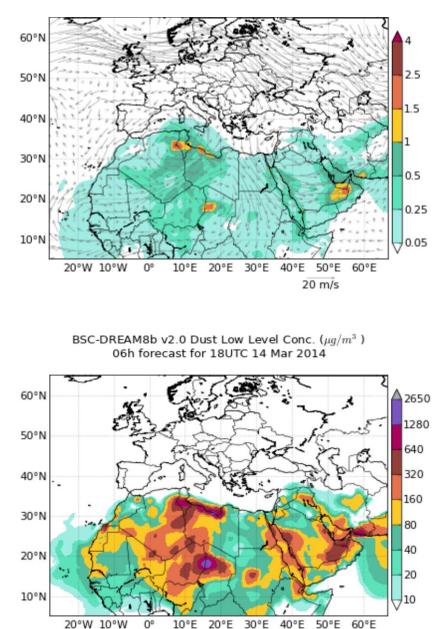



Figure 207: AERONET\_ETNA 250m \_AQUA






Figure 208: AERONET\_ETNA 250m \_TERRA

The above images do not provide clear information about the possible occurrence of a Saharan event due to the high cloudiness around the Maltese Islands.

#### **BSC-DREAM dust model**

The figure below represents the BSC-DREAM prediction of total dust expressed in terms of lowest model level dust concentration (in  $\mu$ g/m<sup>3</sup>) and of dust load (in g/m<sup>2</sup>). The dust load is in size classes between 0.1 and 10  $\mu$ m over Europe at 12:00 UTC and 18.00 UTC, and superimposed on the same figure are the corresponding hourly forecasted wind vectors at 3000m height level.





BSC-DREAM8b v2.0 Dust Load ( $g/m^2$ ) and 3000m Wind 00h forecast for 12UTC 14 Mar 2014

Figure 209:BSC-DREAM outputs on the 14 March.

From the dust loading image it can be noted that on the 14<sup>th</sup> of March Malta was influenced by dust loading from Saharan region of limited intensity, through wind vectors that describe a strenghtless vortex that interest the North-Western side of Africa and the Southern side of Italy.

Instead, the dust concentration image shows that Malta on that day was not influenced by dust loading from Saharan region, that appears confined in the North-Western side of Africa only.à



#### HYSPLIT model

The following figure shows the application of HYSPLIT on the Maltese islands on the 14<sup>th</sup> of March. The HYSPLIT output is related to 11.00 UTC, defined as the moment of maximum peak of the possible dust event.

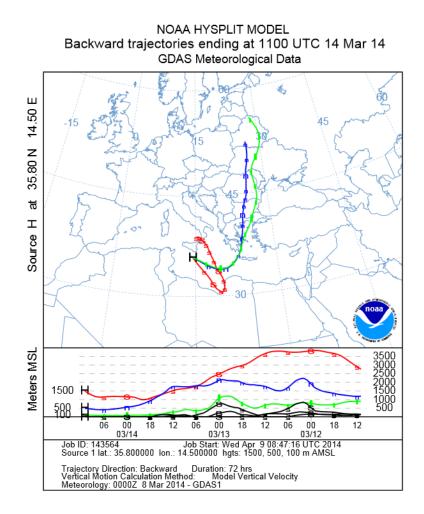



Figure 210 : HYSPLIT backward trajectory at 1500m. 500m and 100 m on the 14 March.

The HYSPLIT model outputs related to the conditions on the 14<sup>th</sup> March show that the backward trajectories ending over Marsaxlokk at 500m and 100m height were directed from North to South. These trajectories transported air and dust masses over Malta which were from the North and not from the Saharan region. The backward trajectory at 1500m, reached the coast of Lybia before reaching Malta.The following figures show, for each backward trajectory, the variation of the parameters "Terrain height" and "Mixed layer depth", along the path. This information allows some further assessment about the probable intensity of the event at the arriving-point of this trajectory:



- a reduced distance from the backward trajectory level and the terrain height is considered to be an indicator of a higher intensity event, due to a major implication of the lower level of the atmosphere;
- the presence, along the path, of many points at which the trajectory level is above the mixed layer depth is considered an indicator of a possible decrease of the intensity of the dust aerosol, even if the trajectory being always under the mixed layer depth may be affected by higher level of dust deposition along the path, with minor intensity at the ending-point of the backward trajectory;
- a mixed layer depth higher than the ending-level of each backward trajectory is an indicator of a higher level of intensity of the event;

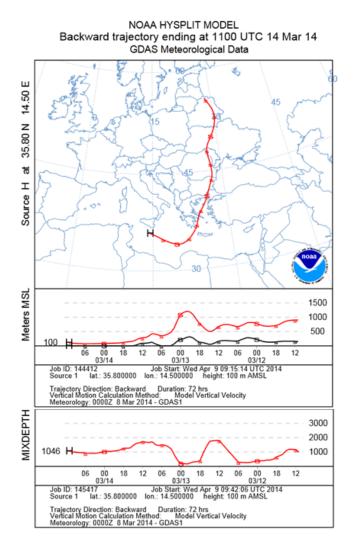



Figure 211: HYSPLIT backward trajectory at 100m on the 14 March.

The backward trajectory related to 100 meters level was from Northern Europe and reached Malta through a path quite long that crossed many Eastern European countries. Overall the final quote at the Maltese islands is lower than the starting point quote. The mixdepth quote over Malta was higher than the arriving quote of this backward trajectory.



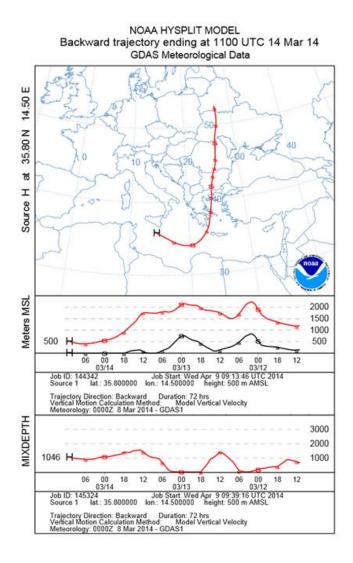



Figure 212: HYSPLIT backward trajectory at 500m on the 14 March.



The backward trajectory related to 500 meters level was very similar to the previous path described about the backwaward trajectory at 100 meters level. The mixdepth quote over Malta was higher than the arriving quote of this backward trajectory.

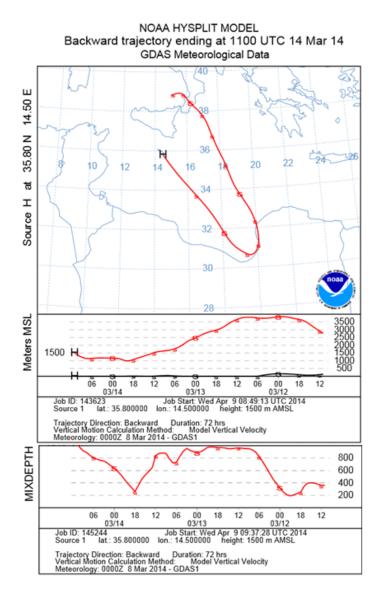
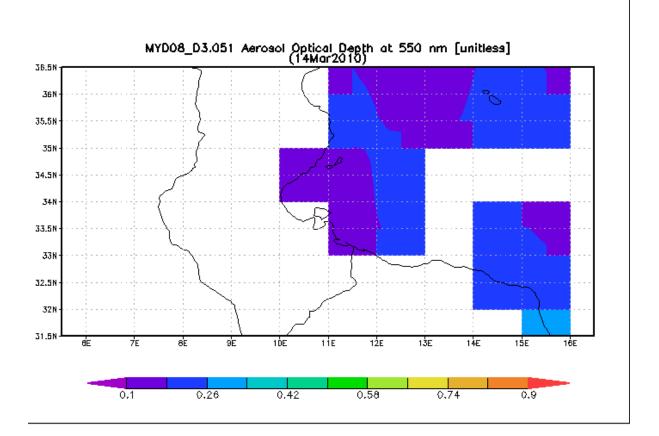
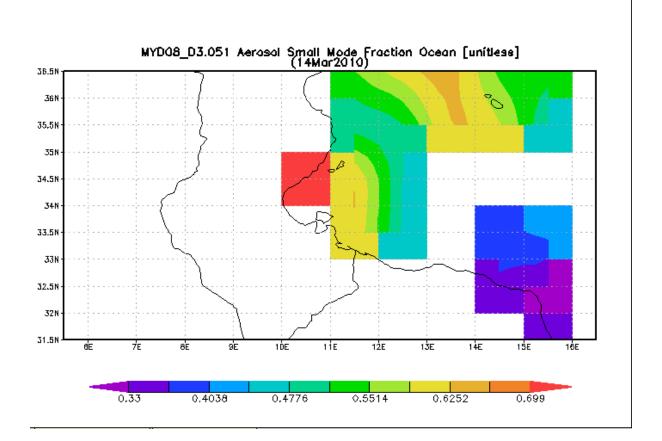



Figure 213: HYSPLIT backward trajectory at 1500m on the 14 March.


The mixed layer depth was lower than the ending-level of the 1500 m backward trajectory which originated in Italy, continued until the coast of Lybia and then turned direction towards the Maltese Islands.

#### **ODIS** sensors


The MODIS data available for the 14<sup>th</sup> March 2014 the Aerosol Optical Depth values in Malta were between 0.1 and 0.26,the Small Mode Fraction values were less than 0.6 and the Mass oncentration



reached was below 15 ug/cm<sup>2</sup>. These values indicate that a Saharan dust episode did not take place on that day.









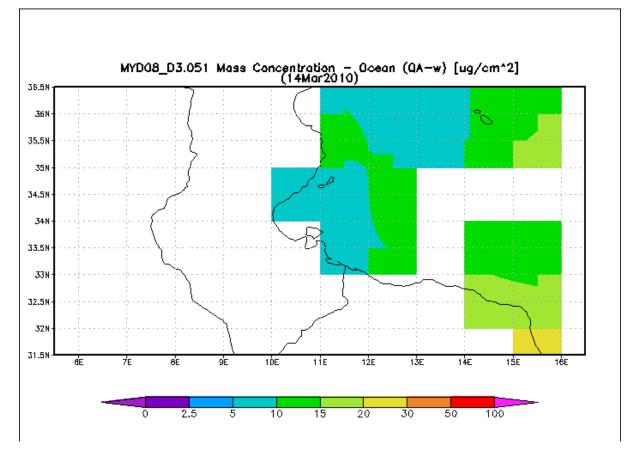



Figure 214: MODIS Terra and Aqua images on the 14 March..

#### Conclusions

On the 14<sup>th</sup> March the air monitoring ongoing at Birżebbuġa and Marsaxlokk stations has recorded exceedances of the daily limit value of PM<sub>10</sub> in Birżebbuġa.

The exceedance was quite low (less than 10  $\mu$ g/m<sup>3</sup> over the limit value). The comparison with the other MEPA air monitoring data shows that no exceedance took place in this day.

The mathematical model applications show that no Saharan dust intrusions affected Malta.

The satellite data analysis using the MODIS AOD<sub>550</sub>, SMF and Mass concentration values have confirmed the evaluations described above related to the absence of Saharan dust episodes.

In conclusion, the PM<sub>10</sub> exceedance at Birżebbuġa on the 14<sup>th</sup> March are not attributed to a Saharan dust episode.



# **ANNEX B – SAMPLING DETAILS**



# Marsaxlokk – PM<sub>10</sub> Sampler Report 1

| Sample | Effective start     | Effective stop      |                   | Elapsed    | Average    | Average      | Deviation | Gas meter | Standard | Actual  |
|--------|---------------------|---------------------|-------------------|------------|------------|--------------|-----------|-----------|----------|---------|
| #      | (yy/mm/dd hh.mm wd) | (yy/mm/dd hh.mm wd) | Programmed        | time       | flow rate  | flow rate Qa | flow rate | volume    | volume   | volume  |
|        |                     |                     | flow rate (I/min) | (hh.mm.ss) | Qs (I/min) | (l/min)      | (%)       | (m^3)     | (m^3)    | (m^3)   |
| 1      | 13/09/04 00:05      | 13/09/04 23:55      | Qa 38.3300        | 13:38:28   | 34.899     | 38.212       | 0.79      | 58.1121   | 49.8545  | 54.5873 |
| 2      | 13/09/05 00:05      | 13/09/05 23:55      | Qa 38.3300        | 23:48:31   | 34.543     | 38.218       | 0.7       | 58.5552   | 49.3484  | 54.5979 |
| 3      | 13/09/06 00:05      | 13/09/06 23:55      | Qa 38.3300        | 23:48:35   | 34.638     | 38.214       | 0.72      | 58.6306   | 49.4825  | 54.5913 |
| 4      | 13/09/07 00:05      | 13/09/07 23:55      | Qa 38.3300        | 23:48:34   | 34.737     | 38.224       | 0.66      | 58.6644   | 49.6212  | 54.6009 |
| 5      | 13/09/08 00:05      | 13/09/08 23:55      | Qa 38.3300        | 23:48:31   | 34.899     | 38.212       | 0.79      | 58.1121   | 49.8545  | 54.5873 |
| 6      | 13/09/09 00:05      | 13/09/09 11:54      | Qa 38.3300        | 11:48:05   |            |              |           |           |          |         |
| 7      | 13/09/10 00:05      | 13/09/10 23:55      | Qa 38.3300        | 23:48:27   | 34.688     | 38.217       | 0.75      | 58.458    | 49.5493  | 54.5901 |
| 8      | 13/09/11 00:05      | 13/09/11 23:55      | Qa 38.3300        | 23:48:31   | 34.609     | 38.216       | 0.74      | 58.5046   | 49.4389  | 54.5923 |



| Average ambient temperature (°C) | Average ambient pressure (kPa)            |
|----------------------------------|-------------------------------------------|
|                                  |                                           |
| 24.97                            | 101.03                                    |
| 27.34                            | 100.78                                    |
| 27.56                            | 101.14                                    |
| 27.84                            | 101.5                                     |
|                                  |                                           |
| 27.89                            | 101.39                                    |
| 27.98                            | 101.19                                    |
|                                  | 24.97<br>27.34<br>27.56<br>27.84<br>27.89 |



### Marsaxlokk – PM<sub>2.5</sub> Sampler Report 1

| Sample | Effective start     | Effective stop      | Programmed | Elapsed    | Average    | Average      | Deviation | Gas meter    | Standard | Actual       |
|--------|---------------------|---------------------|------------|------------|------------|--------------|-----------|--------------|----------|--------------|
| #      | (yy/mm/dd hh.mm wd) | (yy/mm/dd hh.mm wd) | flow rate  | time       | flow rate  | flow rate Qa | flow rate | volume (m^3) | volume   | volume (m^3) |
|        |                     |                     | (l/min)    | (hh.mm.ss) | Qs (l/min) | (I/min)      | (%)       |              | (m^3)    |              |
| 1      | 13/09/04 00:05      | 13/09/04 23:55      | Qa 38.3300 | 13:38:26   |            |              |           |              |          |              |
| 2      | 13/09/05 00:05      | 13/09/05 23:55      | Qa 38.3300 | 23:48:38   | 34.867     | 38.164       | 1         | 57.8311      | 49.8115  | 54.5225      |
| 3      | 13/09/06 00:05      | 13/09/06 14:09      | Qa 38.3300 | 14:03:03   |            |              |           |              |          |              |
| 4      | 13/09/07 00:05      | 13/09/07 13:06      | Qa 38.3300 | 12:59:44   |            |              |           |              |          |              |
| 5      | 13/09/08 00:05      | 13/09/08 11:29      | Qa 38.3300 | 11:23:33   |            |              |           |              |          |              |
| 6      | 13/09/09 00:05      | 13/09/09 11:26      | Qa 38.3300 | 11:20:24   |            |              |           |              |          |              |
| 7      | 13/09/10 00:05      | 13/09/10 23:55      | Qa 38.3300 | 23:48:37   | 34.659     | 38.164       | 1.14      | 58.2791      | 49.514   | 54.5226      |
| 8      | 13/09/11 00:05      | 13/09/11 23:55      | Qa 38.3300 | 23:48:35   | 34.573     | 38.165       | 1.1       | 58.1666      | 49.3911  | 54.5232      |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        |                                  |                                |
| 2        | 25.61                            | 101.28                         |
| 3        |                                  |                                |
| 4        |                                  |                                |
| 5        |                                  |                                |
| 6        |                                  |                                |
| 7        | 28.89                            | 101.78                         |
| 8        | 28.99                            | 101.56                         |
| 9        |                                  |                                |



## Birżebbuġa – PM10 Sampler Report 1

| Sample | Effective start     | Effective stop      | Programmed | Elapsed    | Average    | Average      | Deviation | Gas meter    | Standard | Actual       |
|--------|---------------------|---------------------|------------|------------|------------|--------------|-----------|--------------|----------|--------------|
| #      | (yy/mm/dd hh.mm wd) | (yy/mm/dd hh.mm wd) | flow rate  | time       | flow rate  | flow rate Qa | flow rate | volume (m^3) | volume   | volume (m^3) |
|        |                     |                     | (l/min)    | (hh.mm.ss) | Qs (l/min) | (l/min)      | (%)       |              | (m^3)    |              |
| 1      | 13/09/04 00:05      | 13/09/04 23:55      | Qa 38.3300 | 23:48:33   | 34.943     | 38.228       | 0.69      | 56.9753      | 49.9187  | 54.6105      |
| 2      | 13/09/05 00:05      | 13/09/05 23:55      | Qa 38.3300 | 23:48:38   | 35.002     | 38.216       | 0.73      | 57.0662      | 50.0041  | 54.5965      |
| 3      | 13/09/06 00:05      | 13/09/06 23:55      | Qa 38.3300 | 23:48:31   | 34.647     | 38.212       | 0.89      | 57.3955      | 49.4941  | 54.5858      |
| 4      | 13/09/07 00:05      | 13/09/07 23:55      | Qa 38.3300 | 23:48:36   | 34.749     | 38.22        | 0.86      | 57.3601      | 49.6428  | 54.601       |
| 5      | 13/09/08 00:05      | 13/09/08 23:55      | Qa 38.3300 | 23:48:37   | 34.814     | 38.221       | 0.83      | 57.4349      | 49.7361  | 54.6009      |
| 6      | 13/09/09 00:05      | 13/09/09 23:55      | Qa 38.3300 | 23:48:33   | 34.832     | 38.221       | 0.85      | 57.659       | 49.76    | 54.6004      |
| 7      | 13/09/10 00:05      | 13/09/10 23:55      | Qa 38.3300 | 23:48:35   | 34.867     | 38.225       | 0.74      | 57.8688      | 49.8105  | 54.6077      |
| 8      | 13/09/11 00:05      | 13/09/11 23:55      | Qa 38.3300 | 23:48:28   | 34.751     | 38.227       | 0.71      | 57.8563      | 49.6396  | 54.6054      |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        | 26.6                             | 10167                          |
| 2        | 25.07                            | 101.35                         |
| 3        | 27.4                             | 101.12                         |
| 4        | 27.65                            | 101.48                         |
| 5        | 28.18                            | 101.85                         |
| 6        | 28.18                            | 101.9                          |
| 7        | 27.59                            | 101.79                         |
| 8        | 2802                             | 101.59                         |



## Birżebbuġa – PM<sub>2.5</sub> Sampler Report 1

| Sample | Effective start     | Effective stop      | Programmed | Elapsed    | Average    | Average      | Deviation | Gas meter    | Standard | Actual       |
|--------|---------------------|---------------------|------------|------------|------------|--------------|-----------|--------------|----------|--------------|
| #      | (yy/mm/dd hh.mm wd) | (yy/mm/dd hh.mm wd) | flow rate  | time       | flow rate  | flow rate Qa | flow rate | volume (m^3) | volume   | volume (m^3) |
|        |                     |                     | (I/min)    | (hh.mm.ss) | Qs (l/min) | (l/min)      | (%)       |              | (m^3)    |              |
| 1      | 13/09/04 00:05      | 13/09/04 23:55      | Qa 38.3300 | 23:48:31   | 34.772     | 38.242       | 0.72      | 56.9657      | 49.6729  | 54.6295      |
| 2      | 13/09/05 00:05      | 13/09/05 23:55      | Qa 38.3300 | 23:48:34   | 34.822     | 38.237       | 0.77      | 56.9602      | 49.7457  | 54.6235      |
| 3      | 13/09/06 00:05      | 13/09/06 23:55      | Qa 38.3300 | 23:48:35   | 34.469     | 38.24        | 077       | 57.2859      | 49.2416  | 54.6289      |
| 4      | 13/09/07 00:05      | 13/09/07 23:55      | Qa 38.3300 | 23:48:36   | 34.559     | 38.241       | 0.75      | 57.2971      | 49.3705  | 54.6318      |
| 5      | 13/09/08 00:05      | 13/09/08 23:55      | Qa 38.3300 | 23:48:31   | 34.648     | 38.242       | 0.79      | 57.3949      | 49.495   | 54.6282      |
| 6      | 13/09/09 00:05      | 13/09/09 23:55      | Qa 38.3300 | 23:48:32   | 34.674     | 38.244       | 0.72      | 57.4783      | 49.5334  | 54.633       |
| 7      | 13/09/10 00:05      | 13/09/10 23:55      | Qa 38.3300 | 23:48:32   | 34.689     | 38.247       | 0.82      | 57.4725      | 49.5539  | 54.6368      |
| 8      | 13/09/11 00:05      | 13/09/11 23:55      | Qa 38.3300 | 23:48:32   | 34.553     | 38.243       | 0.73      | 57.4812      | 49.3602  | 54.6315      |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        | 28.04                            | 101.62                         |
| 2        | 26.53                            | 101.27                         |
| 3        | 29.09                            | 101.09                         |
| 4        | 29.39                            | 101.45                         |
| 5        | 29.74                            | 101.83                         |
| 6        | 29.65                            | 101.87                         |
| 7        | 29.16                            | 101.74                         |
| 8        | 29.75                            | 101.55                         |



| Sample<br># | Effective start<br>(yy/mm/dd hh.mm wd) | Effective stop<br>(yy/mm/dd hh.mm wd) | Programmed<br>flow rate (I/min) | Elapsed<br>time<br>(hh.mm.ss) | Average<br>flow rate<br>Qs (I/min) | Average<br>flow rate Qa<br>(I/min) | Deviation<br>flow rate<br>(%) | Gas meter<br>volume<br>(m^3) | Standard<br>volume<br>(m^3) | Actual<br>volume<br>(m^3) |
|-------------|----------------------------------------|---------------------------------------|---------------------------------|-------------------------------|------------------------------------|------------------------------------|-------------------------------|------------------------------|-----------------------------|---------------------------|
| 1           | 13/09/12 00:05                         | 13/09/12 10:37                        | Qa 38.3300                      |                               |                                    |                                    |                               |                              |                             |                           |
| 2           | 13/09/13 00:05                         | 13/09/13 23:55                        | Qa 38.3300                      | 23:48:37                      | 34.845                             | 38.224                             | 0.74                          | 57.9261                      | 49.7791                     | 54.6075                   |
| 3           | 13/09/14 00:05                         | 13/09/14 23:55                        | Qa 38.3300                      | 23:48:39                      | 34.919                             | 38.22                              | 0.73                          | 58.0597                      | 49.8868                     | 54.6006                   |
| 4           | 13/09/15 00:05                         | 13/09/15 23:55                        | Qa 38.3300                      | 23:48:36                      | 34.7                               | 38.216                             | 0.77                          | 58.008                       | 49.5719                     | 54.5951                   |
| 5           | 13/09/16 00:05                         | 13/09/16 23:55                        | Qa 38.3300                      | 23:48:38                      | 34.514                             | 38.216                             | 0.75                          | 57.7498                      | 49.308                      | 54.5961                   |
| 6           | 13/09/17 00:05                         | 13/09/17 23:55                        | Qa 38.3300                      | 23:48:38                      | 34.555                             | 38.218                             | 0.77                          | 57.8882                      | 49.3657                     | 54.5993                   |
| 7           | 13/09/18 00:05                         | 13/09/18 23:55                        | Qa 38.3300                      | 23:48:39                      | 34.648                             | 38.217                             | 0.74                          | 57.8782                      | 49.5                        | 54.5981                   |
| 8           | 13/09/19 00:05                         | 13/09/19 23:55                        | Qa 38.3300                      | 23:48:32                      | 34.657                             | 38.219                             | 0.73                          | 57.9971                      | 49.5109                     | 54.5995                   |
| 9           | 13/09/20 00:05                         | 13/09/20 23:55                        | Qa 38.3300                      | 23:48:40                      | 34.73                              | 38.211                             | 071                           | 58.0266                      | 49.6179                     | 54.5889                   |
| 10          | 13/09/21 00:05                         | 13/09/21 23:55                        | Qa 38.3300                      | 23:48:32                      | 34.97                              | 38.218                             | 0.73                          | 58.0153                      | 49.9569                     | 54.5981                   |
| 11          | 13/09/22 00:05                         | 13/09/22 23:55                        | Qa 38.3300                      | 23:48:37                      | 35.056                             | 38.223                             | 0.73                          | 57.9179                      | 50.0815                     | 54.6047                   |
| 12          | 13/09/23 00:05                         | 13/09/23 23:55                        | Qa 38.3300                      | 23:48:33                      | 35.108                             | 38.222                             | 0.74                          | 58.0396                      | 50.1528                     | 54.6012                   |
| 13          | 13/09/24 00:05                         | 13/09/24 23:55                        | Qa 38.3300                      | 23:48:32                      | 35.047                             | 38.215                             | 0.78                          | 58.0153                      | 50.0674                     | 54.592                    |
| 14          | 13/09/25 00:05                         | 13/09/25 23:55                        | Qa 38.3300                      | 23:35:38                      | 34.921                             | 38.218                             | 0.71                          | 57.4733                      | 49.4353                     | 54.1023                   |

Marsaxlokk – PM<sub>10</sub> Sampler Report 2





| Average ambient temperature (°C) | Average ambient pressure (kPa)                                                                                                                 |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  |                                                                                                                                                |
| 26.33                            | 101.3                                                                                                                                          |
| 25.97                            | 101.41                                                                                                                                         |
| 26.95                            | 101.11                                                                                                                                         |
| 26.86                            | 100.54                                                                                                                                         |
| 26.17                            | 100.42                                                                                                                                         |
| 25.47                            | 100.46                                                                                                                                         |
| 25.59                            | 100.52                                                                                                                                         |
| 25.54                            | 100.74                                                                                                                                         |
| 2483                             | 101.17                                                                                                                                         |
| 2433                             | 101.24                                                                                                                                         |
| 23.8                             | 101.21                                                                                                                                         |
| 2411                             | 101.16                                                                                                                                         |
| 25.21                            | 101.16                                                                                                                                         |
|                                  | 26.33         25.97         26.95         26.86         26.17         25.47         25.59         25.54         2483         23.8         2411 |



| Sample<br># | Effective start<br>(yy/mm/dd hh.mm wd) | Effective stop<br>(yy/mm/dd hh.mm wd) | Programmed<br>flow rate (I/min) | Elapsed<br>time<br>(hh.mm.ss) | Average<br>flow rate<br>Qs (I/min) | Average<br>flow rate Qa<br>(I/min) | Deviation<br>flow rate<br>(%) | Gas meter<br>volume<br>(m^3) | Standard<br>volume<br>(m^3) | Actual<br>volume<br>(m^3) |
|-------------|----------------------------------------|---------------------------------------|---------------------------------|-------------------------------|------------------------------------|------------------------------------|-------------------------------|------------------------------|-----------------------------|---------------------------|
| 1           | 13/09/12 12:06                         | 13/09/12 23:55                        | Qa 38.3300                      |                               |                                    |                                    |                               |                              |                             |                           |
| 2           | 13/09/13 00:05                         | 13/09/13 23:55                        | Qa 38.3300                      | 23:48:36                      | 34.794                             | 38.173                             | 1.01                          | 57.5185                      | 49.7078                     | 54.5352                   |
| 3           | 13/09/14 00:05                         | 13/09/14 23:55                        | Qa 38.3300                      | 23:48:34                      | 34.836                             | 38.166                             | 1                             | 57.8151                      | 49.7657                     | 54.5235                   |
| 4           | 13/09/15 00:05                         | 13/09/15 23:55                        | Qa 38.3300                      | 23:48:36                      | 34.622                             | 38.162                             | 1.02                          | 57.8122                      | 49.4614                     | 54.5187                   |
| 5           | 13/09/16 00:05                         | 13/09/16 23:55                        | Qa 38.3300                      | 23:48:37                      | 34.457                             | 38.156                             | 108                           | 57.4104                      | 49.2275                     | 54.5113                   |
| 6           | 13/09/17 00:05                         | 13/09/17 23:55                        | Qa 38.3300                      |                               |                                    |                                    |                               |                              |                             |                           |
| 7           | 13/09/18 00:05                         | 13/09/18 23:55                        | Qa 38.3300                      |                               |                                    |                                    |                               |                              |                             |                           |
| 8           | 13/09/19 00:05                         | 13/09/19 23:55                        | Qa 38.3300                      |                               |                                    |                                    |                               |                              |                             |                           |
| 9           | 13/09/20 00:05                         | 13/09/20 23:55                        | Qa 38.3300                      |                               |                                    |                                    |                               |                              |                             |                           |
| 10          | 13/09/21 00:05                         | 13/09/21 23:55                        | Qa 38.3300                      |                               |                                    |                                    |                               |                              |                             |                           |
| 11          | 13/09/22 00:05                         | 13/09/22 23:55                        | Qa 38.3300                      |                               |                                    |                                    |                               |                              |                             |                           |
| 12          | 13/09/23 00:05                         | 13/09/23 23:55                        | Qa 38.3300                      |                               |                                    |                                    |                               |                              |                             |                           |
| 13          | 13/09/24 00:05                         | 13/09/24 23:55                        | Qa 38.3300                      |                               |                                    |                                    |                               |                              |                             |                           |
| 14          | 13/09/25 00:05                         | 13/09/25 23:55                        | Qa 38.3300                      |                               |                                    |                                    |                               |                              |                             |                           |

# Marsaxlokk – PM<sub>2.5</sub> Sampler Report 2





| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        |                                  |                                |
| 2        | 27.19                            | 101.58                         |
| 3        | 27.16                            | 101.71                         |
| 4        | 28.12                            | 101.42                         |
| 5        | 27.69                            | 100.81                         |
| 6        |                                  |                                |
| 7        |                                  |                                |
| 8        |                                  |                                |
| 9        |                                  |                                |
| 10       |                                  |                                |
| 11       |                                  |                                |
| 12       |                                  |                                |
| 13       |                                  |                                |
| 14       |                                  |                                |



| Sample<br># | Effective start<br>(yy/mm/dd hh.mm wd) | Effective stop<br>(yy/mm/dd hh.mm wd) | Programmed<br>flow rate<br>(I/min) | Elapsed<br>time<br>(hh.mm.ss) | Average<br>flow rate<br>Qs (I/min) | Average<br>flow rate Qa<br>(I/min) | Deviation<br>flow rate<br>(%) | Gas met<br>volume (m^s | er Standard<br>) volume<br>(m^3) | Actual<br>volume (m^3) |
|-------------|----------------------------------------|---------------------------------------|------------------------------------|-------------------------------|------------------------------------|------------------------------------|-------------------------------|------------------------|----------------------------------|------------------------|
| 1           | 13/09/12 13:07                         | 13/09/12 23:55                        | Qa 38.3300                         |                               |                                    |                                    |                               |                        |                                  |                        |
| 2           | 13/09/13 00:05                         | 13/09/13 23:55                        | Qa 38.3300                         | 23:48:35                      | 34.916                             | 38.229                             | 0.69                          | 57.8732                | 49.8804                          | 54.6128                |
| 3           | 13/09/14 00:05                         | 13/09/14 23:55                        | Qa 38.3300                         |                               |                                    |                                    |                               |                        |                                  |                        |
| 4           | 13/09/15 00:05                         | 13/09/15 23:55                        | Qa 38.3300                         |                               |                                    |                                    |                               |                        |                                  |                        |
| 5           | 13/09/16 00:05                         | 13/09/16 23:55                        | Qa 38.3300                         |                               |                                    |                                    |                               |                        |                                  |                        |
| 6           | 13/09/17 00:05                         | 13/09/17 23:55                        | Qa 38.3300                         |                               |                                    |                                    |                               |                        |                                  |                        |
| 7           | 13/09/18 00:05                         | 13/09/18 23:55                        | Qa 38.3300                         |                               |                                    |                                    |                               |                        |                                  |                        |
| 8           | 13/09/19 00:05                         | 13/09/19 23:55                        | Qa 38.3300                         |                               |                                    |                                    |                               |                        |                                  |                        |
| 9           | 13/09/20 00:05                         | 13/09/20 23:55                        | Qa 38.3300                         |                               |                                    |                                    |                               |                        |                                  |                        |
| 10          | 13/09/21 00:05                         | 13/09/21 23:55                        | Qa 38.3300                         |                               |                                    |                                    |                               |                        |                                  |                        |
| 11          | 13/09/22 00:05                         | 13/09/22 23:55                        | Qa 38.3300                         |                               |                                    |                                    |                               |                        |                                  |                        |
| 12          | 13/09/23 00:05                         | 13/09/23 23:55                        | Qa 38.3300                         |                               |                                    |                                    |                               |                        |                                  |                        |
| 13          | 13/09/24 00:05                         | 13/09/24 23:55                        | Qa 38.3300                         |                               |                                    |                                    |                               |                        |                                  |                        |
| 14          | 13/09/25 00:05                         | 13/09/25 23:55                        | Qa 38.3300                         |                               |                                    |                                    |                               |                        |                                  |                        |

## Birżebbuġa – PM<sub>10</sub> Sampler Report 2





| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        |                                  |                                |
| 2        | 27.02                            | 102.04                         |
| 3        |                                  |                                |
| 4        |                                  |                                |
| 5        |                                  |                                |
| 6        |                                  |                                |
| 7        |                                  |                                |
| 8        |                                  |                                |
| 9        |                                  |                                |
| 10       |                                  |                                |
| 11       |                                  |                                |
| 12       |                                  |                                |
| 13       |                                  |                                |
| 14       |                                  |                                |



| Sample<br># | Effective start<br>(yy/mm/dd hh.mm wd) | Effective stop<br>(yy/mm/dd hh.mm wd) | Programmed<br>flow rate<br>(I/min) | Elapsed<br>time<br>(hh.mm.ss) | Average<br>flow rate<br>Qs (I/min) | Average<br>flow rate Qa<br>(I/min) | Deviation<br>flow rate<br>(%) | Gas meter<br>volume (m^3) |         | Actual<br>(m^3) | volume |
|-------------|----------------------------------------|---------------------------------------|------------------------------------|-------------------------------|------------------------------------|------------------------------------|-------------------------------|---------------------------|---------|-----------------|--------|
| 1           | 13/09/12 13:24                         | 13/09/12 23:55                        | Qa 38.3300                         |                               |                                    |                                    |                               |                           |         |                 |        |
| 2           | 13/09/13 00:05                         | 13/09/13 23:55                        | Qa 38.3300                         | 23:48:38                      | 34.783                             | 38.243                             | 074                           | 57.5115                   | 49.6939 | 54.6366         |        |
| 3           | 13/09/14 00:05                         | 13/09/14 23:55                        | Qa 38.3300                         | 23:48:36                      | 34.887                             | 38.249                             | 0.73                          | 57.6101                   | 49.8392 | 54.6426         |        |
| 4           | 13/09/15 00:05                         | 13/09/15 23:55                        | Qa 38.3300                         | 23:48:27                      | 34.657                             | 38.242                             | 0.75                          | 57.426                    | 49.5081 | 54.6283         |        |
| 5           | 13/09/16 00:05                         | 13/09/16 23:55                        | Qa 38.3300                         | 23:48:35                      | 34.489                             | 38.234                             | 0.74                          | 57.2127                   | 49.271  | 54.6213         |        |
| 6           | 13/09/17 00:05                         | 13/09/17 23:55                        | Qa 38.3300                         | 23:48:32                      | 34.528                             | 38.247                             | 069                           | 57.4                      | 49.3235 | 54.6375         |        |
| 7           | 13/09/18 00:05                         | 13/09/18 23:55                        | Qa 38.3300                         | 23:48:33                      | 34.6                               | 38.236                             | 0.75                          | 57.3985                   | 49.4274 | 54.6217         |        |
| 8           | 13/09/19 00:05                         | 13/09/19 23:55                        | Qa 38.3300                         | 23:48:29                      | 34.625                             | 38.248                             | 0.75                          | 57.5146                   | 49.4599 | 54.636          |        |
| 9           | 13/09/20 00:05                         | 13/09/20 23:55                        | Qa 38.3300                         | 23:48:42                      | 34.645                             | 38.243                             | 0.76                          | 57.5577                   | 49.4971 | 54.638          |        |
| 10          | 13/09/21 00:05                         | 13/09/21 23:55                        | Qa 38.3300                         | 23:48:24                      | 34.875                             | 38.24                              | 0.77                          | 57.4778                   | 49.8158 | 54.6201         |        |
| 11          | 13/09/22 00:05                         | 13/09/22 23:55                        | Qa 38.3300                         | 23:48:34                      | 34.979                             | 38.236                             | 0.72                          | 57.1374                   | 49.9693 | 54.6224         |        |
| 12          | 13/09/23 00:05                         | 13/09/23 23:55                        | Qa 38.3300                         | 23:48:34                      | 35.063                             | 38.244                             | 0.79                          | 57.3851                   | 50.0895 | 54.6347         |        |
| 13          | 13/09/24 00:05                         | 13/09/24 23:55                        | Qa 38.3300                         | 23:48:32                      | 34.955                             | 38.241                             | 0.72                          | 57.3842                   | 49.9336 | 54.6285         |        |
| 14          | 13/09/25 00:05                         | 13/09/25 23:55                        | Qa 38.3300                         | 23:48:32                      | 34.89                              | 38.247                             | 0.72                          | 57.5152                   | 49.8405 | 54.6363         |        |

Birżebbuġa – PM<sub>2.5</sub> Sampler Report 2





| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        |                                  |                                |
| 2        | 28.07                            | 101.66                         |
| 3        | 27.55                            | 101.77                         |
| 4        | 28.53                            | 101.45                         |
| 5        | 28.27                            | 100.89                         |
| 6        | 27.68                            | 100.77                         |
| 7        | 27.02                            | 100.79                         |
| 8        | 27.11                            | 100.86                         |
| 9        | 27.58                            | 101.09                         |
| 10       | 26.74                            | 101.49                         |
| 11       | 25.92                            | 101.52                         |
| 12       | 25.21                            | 101.5                          |
| 13       | 25.99                            | 101.46                         |
| 14       | 26.71                            | 101.5                          |



| Sample<br># | Effective start<br>(yy/mm/dd hh.mm wd) | Effective stop<br>(yy/mm/dd hh.mm wd) | Programmed        | Elapsed<br>time | Average<br>flow rate | -       | Deviation<br>flow rate | Gas meter<br>volume | Standard<br>volume | Actual<br>volume |
|-------------|----------------------------------------|---------------------------------------|-------------------|-----------------|----------------------|---------|------------------------|---------------------|--------------------|------------------|
|             |                                        |                                       | flow rate (I/min) | (hh.mm.ss)      | Qs (l/min)           | (I/min) | (%)                    | (m^3)               | (m^3)              | (m^3)            |
| 1           | 13/09/26 00:05                         | 13/09/26 23:55                        | Qa 38.3300        |                 |                      |         |                        |                     |                    |                  |
| 2           | 13/09/27 00:05                         | 13/09/27 23:55                        | Qa 38.3300        | 23:48:34        | 34.595               | 38.217  | 0.76                   | 58.3396             | 49.4207            | 54.5932          |
| 3           | 13/09/28 00:05                         | 13/09/28 23:55                        | Qa 38.3300        | 23:48:35        | 34.717               | 38.21   | 0.74                   | 58.447              | 49.596             | 54.5858          |
| 4           | 13/09/29 00:05                         | 13/09/29 23:55                        | Qa 38.3300        | 23:48:30        | 34.469               | 38.209  | 0.77                   | 58.2992             | 49.239             | 54.5815          |
| 5           | 13/09/30 00:05                         | 13/09/30 23:55                        | Qa 38.3300        | 23:48:28        | 34.42                | 38.221  | 0.75                   | 58.0967             | 49.1682            | 54.5986          |
| 6           | 13/10/01 00:05                         | 13/10/01 23:55                        | Qa 38.3300        | 23:48:34        | 34.531               | 38.216  | 0.8                    | 58.0762             | 49.3313            | 54.5958          |
| 7           | 13/10/02 00:05                         | 13/10/02 23:55                        | Qa 38.3300        | 23:48:33        | 34.647               | 38.222  | 073                    | 58.2787             | 49.4944            | 54.6005          |
| 8           | 13/10/03 00:05                         | 13/10/03 09:59                        | Qa 38.3300        |                 |                      |         |                        |                     |                    |                  |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        |                                  |                                |
| 2        | 27.47                            | 100.98                         |
| 3        | 26.13                            | 100.9                          |
| 4        | 27.23                            | 100.55                         |
| 5        | 26.68                            | 100.19                         |
| 6        | 26.15                            | 100.35                         |
| 7        | 26.26                            | 100.71                         |
| 8        |                                  |                                |



| Sample | Effective start     | Effective stop      | Programmed           | Elapsed            | Average                 | Average                 | Deviation        | Gas meter    | Standard        | Actual       |
|--------|---------------------|---------------------|----------------------|--------------------|-------------------------|-------------------------|------------------|--------------|-----------------|--------------|
| #      | (yy/mm/dd hh.mm wd) | (yy/mm/dd hh.mm wd) | flow rate<br>(I/min) | time<br>(hh.mm.ss) | flow rate<br>Qs (I/min) | flow rate Qa<br>(I/min) | flow rate<br>(%) | volume (m^3) | volume<br>(m^3) | volume (m^3) |
| 1      | 13/09/26 00:05      | 13/09/26 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 2      | 13/09/27 00:05      | 13/09/27 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 3      | 13/09/28 00:05      | 13/09/28 23:55      | Qa 38.3300           | 23:48:37           | 34.692                  | 38.174                  | 0.98             | 58.7572      | 49.5629         | 54.5372      |
| 4      | 13/09/29 00:05      | 13/09/29 23:55      | Qa 38.3300           | 23:48:34           | 34.447                  | 38.166                  | 0.99             | 58.4644      | 49.2102         | 54.5232      |
| 5      | 13/09/30 00:05      | 13/09/30 23:55      | Qa 38.3300           | 23:48:32           | 34.412                  | 38.15                   | 1.05             | 58.557       | 49.1583         | 54.4993      |
| 6      | 13/10/01 00:05      | 13/10/01 23:55      | Qa 38.3300           | 23:48:31           | 34.512                  | 38.163                  | 1                | 58.4064      | 49.3014         | 54.5147      |
| 7      | 13/10/02 00:05      | 13/10/02 23:55      | Qa 38.3300           | 23:48:32           | 34.615                  | 38.157                  | 1.05             | 58.6162      | 49.449          | 54.5087      |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        |                                  |                                |
| 2        |                                  |                                |
| 3        | 27.19                            | 101.28                         |
| 4        | 28.16                            | 10091                          |
| 5        | 27.3                             | 10056                          |
| 6        | 26.9                             | 100.69                         |
| 7        | 27.16                            | 101.09                         |



## Birżebbuġa – PM<sub>10</sub> Sampler Report 3

| Sample | Effective start     | Effective stop      | Programmed | Elapsed            | Average                 | Average                 | Deviation        | Gas meter    | Standard        | Actual       |
|--------|---------------------|---------------------|------------|--------------------|-------------------------|-------------------------|------------------|--------------|-----------------|--------------|
| #      | (yy/mm/dd hh.mm wd) | (yy/mm/dd hh.mm wd) |            | time<br>(hh.mm.ss) | flow rate<br>Qs (l/min) | flow rate Qa<br>(I/min) | flow rate<br>(%) | volume (m^3) | volume<br>(m^3) | volume (m^3) |
| 1      | 13/09/26 00:05      | 13/09/26 23:55      | Qa 38.3300 |                    |                         |                         |                  |              |                 |              |
| 2      | 13/09/27 00:05      | 13/09/27 23:55      | Qa 38.3300 |                    |                         |                         |                  |              |                 |              |
| 3      | 13/09/28 00:05      | 13/09/28 23:55      | Qa 38.3300 |                    |                         |                         |                  |              |                 |              |
| 4      | 13/09/29 00:05      | 13/09/29 23:55      | Qa 38.3300 |                    |                         |                         |                  |              |                 |              |
| 5      | 13/09/30 00:05      | 13/09/30 23:55      | Qa 38.3300 |                    |                         |                         |                  |              |                 |              |
| 6      | 13/10/01 00:05      | 13/10/01 23:55      | Qa 38.3300 |                    |                         |                         |                  |              |                 |              |
| 7      | 13/10/02 00:05      | 13/10/02 23:55      | Qa 38.3300 |                    |                         |                         |                  |              |                 |              |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        |                                  |                                |
| 2        |                                  |                                |
| 3        |                                  |                                |
| 4        |                                  |                                |
| 5        |                                  |                                |
| 6        |                                  |                                |
| 7        |                                  |                                |



## Birżebbuġa – PM<sub>2.5</sub> Sampler Report 3

| Sample | Effective start     | Effective stop      | Programmed           | Elapsed            | Average                 | Average                 | Deviation        | Gas meter    | Standard        | Actual       |
|--------|---------------------|---------------------|----------------------|--------------------|-------------------------|-------------------------|------------------|--------------|-----------------|--------------|
| #      | (yy/mm/dd hh.mm wd) | (yy/mm/dd hh.mm wd) | flow rate<br>(I/min) | time<br>(hh.mm.ss) | flow rate<br>Qs (I/min) | flow rate Qa<br>(I/min) | flow rate<br>(%) | volume (m^3) | volume<br>(m^3) | volume (m^3) |
| 1      | 13/09/26 00:05      | 13/09/26 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 2      | 13/09/27 00:05      | 13/09/27 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 3      | 13/09/28 00:05      | 13/09/28 23:55      | Qa 38.3300           | 23:48:33           | 34.631                  | 38.242                  | 0.8              | 57.1672      | 49.4721         | 54.6308      |
| 4      | 13/09/29 00:05      | 13/09/29 23:55      | Qa 38.3300           | 23:48:35           | 34.39                   | 38.239                  | 0.82             | 56.8794      | 49.1225         | 54.6247      |
| 5      | 13/09/30 00:05      | 13/09/30 23:55      | Qa 38.3300           | 23:48:33           | 34.372                  | 38.241                  | 0.78             | 57.4234      | 49.1014         | 54.6282      |
| 6      | 13/10/01 00:05      | 13/10/01 23:55      | Qa 38.3300           | 23:48:38           | 34.504                  | 38.241                  | 0.73             | 57.3217      | 49.2945         | 54.6305      |
| 7      | 13/10/02 00:05      | 13/10/02 23:55      | Qa 38.3300           | 23:48:39           | 34.583                  | 38.252                  | 0.78             | 57.487       | 49.4069         | 54.6489      |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        |                                  |                                |
| 2        |                                  |                                |
| 3        | 27.96                            | 101.28                         |
| 4        | 28.96                            | 100.91                         |
| 5        | 28.21                            | 100.56                         |
| 6        | 27.49                            | 100.69                         |
| 7        | 28.01                            | 101.09                         |



| Sample<br># | Effective start<br>(yy/mm/dd hh.mm wd) | Effective stop<br>(yy/mm/dd hh.mm wd) | Programmed<br>flow rate (I/min) | Elapsed<br>time<br>(hh.mm.ss) | Average<br>flow rate<br>Qs (I/min) | Average<br>flow rate Qa<br>(I/min) | Deviation<br>flow rate<br>(%) | Gas meter<br>volume<br>(m^3) | Standard<br>volume<br>(m^3) | Actual<br>volume<br>(m^3) |
|-------------|----------------------------------------|---------------------------------------|---------------------------------|-------------------------------|------------------------------------|------------------------------------|-------------------------------|------------------------------|-----------------------------|---------------------------|
| 1           | 13/10/03 00:05                         | 13/10/03 23:55                        | Qa 38.3300                      | 22:24:23                      | 35.392                             | 38.231                             | 0.81                          | 57.5432                      | 50.6543                     | 54.6072                   |
| 2           | 13/10/04 00:05                         | 13/10/04 23:55                        | Qa 38.3300                      | 23:48:40                      | 35.394                             | 38.228                             | 0.81                          | 57.4257                      | 50.5657                     | 54.6148                   |
| 3           | 13/10/05 00:05                         | 13/10/05 23:55                        | Qa 38.3300                      | 23:48:37                      | 35.334                             | 38.226                             | 0.81                          | 57.6741                      | 50.4784                     | 54.6091                   |
| 4           | 13/10/06 00:05                         | 13/10/06 23:55                        | Qa 38.3300                      | 23:48:31                      | 35.178                             | 38.225                             | 0.78                          | 57.9257                      | 50.2519                     | 54.605                    |
| 5           | 13/10/07 00:05                         | 13/10/07 23:55                        | Qa 38.3300                      | 23:48:34                      | 35.14                              | 38.224                             | 0.85                          | 58.2008                      | 50.1996                     | 54.6055                   |
| 6           | 13/10/08 00:05                         | 13/10/08 23:55                        | Qa 38.3300                      | 23:48:43                      | 35.528                             | 38.232                             | 0.77                          | 58.1591                      | 50.7592                     | 54.6229                   |
| 7           | 13/10/09 00:05                         | 13/10/09 23:55                        | Qa 38.3300                      | 23:48:33                      | 35.244                             | 38.224                             | 0.78                          | 58.4719                      | 50.3472                     | 54.6056                   |
| 8           | 13/10/10 00:05                         | 13/10/10 23:55                        | Qa 38.3300                      | 23:48:35                      | 35.025                             | 38.232                             | 0.76                          | 58.4656                      | 50.0357                     | 54.6174                   |
| 9           | 13/10/11 00:05                         | 13/10/11 23:55                        | Qa 38.3300                      |                               |                                    |                                    |                               |                              |                             |                           |
| 10          | 13/10/12 00:05                         | 13/10/12 23:55                        | Qa 38.3300                      |                               |                                    |                                    |                               |                              |                             |                           |
| 11          | 13/10/13 00:05                         | 13/10/13 23:55                        | Qa 38.3300                      | 23:48:30                      | 34.956                             | 38.233                             | 0.73                          | 58.1732                      | 49.9341                     | 54.6156                   |
| 12          | 13/10/14 00:05                         | 13/10/14 23:55                        | Qa 38.3300                      | 23:48:31                      | 35.011                             | 38.226                             | 0.77                          | 58.3848                      | 50.0139                     | 54.6066                   |
| 13          | 13/10/15 00:05                         | 13/10/15 23:55                        | Qa 38.3300                      |                               |                                    |                                    |                               |                              |                             |                           |
| 14          | 13/10/16 00:05                         | 13/10/16 23:55                        | Qa 38.3300                      | 23:48:41                      | 34.914                             | 38.216                             | 0.75                          | 57.6687                      | 49.8812                     | 54.5973                   |





| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        | 24.48                            | 101.94                         |
| 2        | 24.68                            | 102.32                         |
| 3        | 24.96                            | 102.25                         |
| 4        | 25.08                            | 101.84                         |
| 5        | 25.54                            | 101.89                         |
| 6        | 22.66                            | 102                            |
| 7        | 24.84                            | 101.95                         |
| 8        | 25.76                            | 101.61                         |
| 9        |                                  |                                |
| 10       |                                  |                                |
| 11       | 27.42                            | 101.97                         |
| 12       | 26.92                            | 101.98                         |
| 13       |                                  |                                |
| 14       | 25.72                            | 101.32                         |



| Sample<br># | Effective start<br>(yy/mm/dd hh.mm wd)  | Effective stop<br>(vy/mm/dd hh.mm wd) | U          | Elapsed<br>time | Average<br>flow rate | Average<br>flow rate Qa | Deviation<br>flow rate | Gas meter<br>volume (m^3) | Standard<br>volume | Actual<br>volume (m^3) |
|-------------|-----------------------------------------|---------------------------------------|------------|-----------------|----------------------|-------------------------|------------------------|---------------------------|--------------------|------------------------|
|             | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                       | (I/min)    | (hh.mm.ss)      | Qs (I/min)           | (l/min)                 | (%)                    |                           | (m^3)              | volume (m o,           |
| 1           | 13/10/03 00:05                          | 13/10/03 23:55                        | Qa 38.3300 | 22:29:23        | 35.428               | 38.18                   | 1.12                   | 57.9084                   | 50.6111            | 54.5421                |
| 2           | 13/10/04 00:05                          | 13/10/04 23:55                        | Qa 38.3300 | 23:48:34        | 35.253               | 38.172                  | 123                    | 57.6348                   | 50.3601            | 54.5295                |
| 3           | 13/10/05 00:05                          | 13/10/05 23:55                        | Qa 38.3300 | 23:48:36        | 35.197               | 38.176                  | 113                    | 57.6236                   | 50.2823            | 54.5371                |
| 4           | 13/10/06 00:05                          | 13/10/06 23:55                        | Qa 38.3300 | 23:48:36        | 35.063               | 38.177                  | 121                    | 57.6197                   | 50.0896            | 54.5375                |
| 5           | 13/10/07 00:05                          | 13/10/07 23:55                        | Qa 38.3300 | 23:48:36        | 35.075               | 38.175                  | 118                    | 58.0926                   | 50.1073            | 54.5361                |
| 6           | 13/10/08 00:05                          | 13/10/08 23:55                        | Qa 38.3300 | 23:48:36        | 35.428               | 38.18                   | 112                    | 57.9084                   | 50.6111            | 54.5421                |
| 7           | 13/10/09 00:05                          | 13/10/09 23:55                        | Qa 38.3300 | 23:48:34        | 35.145               | 38.163                  | 124                    | 58.2562                   | 50.207             | 54.5193                |
| 8           | 13/10/10 00:05                          | 13/10/10 23:55                        | Qa 38.3300 | 22:43:06        | 34.788               | 38.02                   | 121                    | 55.1953                   | 47.4063            | 51.8115                |
| 9           | 13/10/11 00:05                          | 13/10/11 23:55                        | Qa 38.3300 |                 |                      |                         |                        |                           |                    |                        |
| 10          | 13/10/12 00:05                          | 13/10/12 23:55                        | Qa 38.3300 |                 |                      |                         |                        |                           |                    |                        |
| 11          | 13/10/13 00:05                          | 13/10/13 23:55                        | Qa 38.3300 |                 |                      |                         |                        |                           |                    |                        |
| 12          | 13/10/14 00:05                          | 13/10/14 23:55                        | Qa 38.3300 |                 |                      |                         |                        |                           |                    |                        |
| 13          | 13/10/15 00:05                          | 13/10/15 23:55                        | Qa 38.3300 |                 |                      |                         |                        |                           |                    |                        |
| 14          | 13/10/16 00:05                          | 13/10/16 23:55                        | Qa 38.3300 |                 |                      |                         |                        |                           |                    |                        |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        | 24.66                            | 101.57                         |
| 2        | 25.37                            | 102.32                         |
| 3        | 25.64                            | 102.25                         |
| 4        | 25.53                            | 101.84                         |
| 5        | 25.71                            | 101.89                         |
| 6        | 22.71                            | 102                            |
| 7        | 252                              | 101.95                         |
| 8        | 2619                             | 101.61                         |
| 9        |                                  |                                |
| 10       |                                  |                                |
| 11       |                                  |                                |
| 12       |                                  |                                |
| 13       |                                  |                                |
| 14       |                                  |                                |



| Sample<br># | Effective stop<br>(yy/mm/dd hh.mm wd) | Elapsed<br>time<br>(hh.mm.ss) | Average<br>flow rate<br>Qs (I/min) | Average<br>flow rate Qa<br>(I/min) | Deviation<br>flow rate<br>(%) | Gas meter<br>volume (m^3) | Standard<br>volume<br>(m^3) | Actual<br>volume (m^3) |
|-------------|---------------------------------------|-------------------------------|------------------------------------|------------------------------------|-------------------------------|---------------------------|-----------------------------|------------------------|
| 1           |                                       |                               |                                    |                                    |                               |                           |                             |                        |
| 2           |                                       |                               |                                    |                                    |                               |                           |                             |                        |
| 3           |                                       |                               |                                    |                                    |                               |                           |                             |                        |
| 4           |                                       |                               |                                    |                                    |                               |                           |                             |                        |
| 5           |                                       |                               |                                    |                                    |                               |                           |                             |                        |
| 6           |                                       |                               |                                    |                                    |                               |                           |                             |                        |
| 7           |                                       |                               |                                    |                                    |                               |                           |                             |                        |
| 8           |                                       |                               |                                    |                                    |                               |                           |                             |                        |
| 9           |                                       |                               |                                    |                                    |                               |                           |                             |                        |
| 10          |                                       |                               |                                    |                                    |                               |                           |                             |                        |
| 11          |                                       |                               |                                    |                                    |                               |                           |                             |                        |
| 12          |                                       |                               |                                    |                                    |                               |                           |                             |                        |
| 13          |                                       |                               |                                    |                                    |                               |                           |                             |                        |
| 14          |                                       |                               |                                    |                                    |                               |                           |                             |                        |

## Birżebbuġa – PM<sub>10</sub> Sampler Report 4





| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        |                                  |                                |
| 2        |                                  |                                |
| 3        |                                  |                                |
| 4        |                                  |                                |
| 5        |                                  |                                |
| 6        |                                  |                                |
| 7        |                                  |                                |
| 8        |                                  |                                |
| 9        |                                  |                                |
| 10       |                                  |                                |
| 11       |                                  |                                |
| 12       |                                  |                                |
| 13       |                                  |                                |
| 14       |                                  |                                |



| Sample<br># | Effective start<br>(yy/mm/dd hh.mm wd) | Effective stop<br>(yy/mm/dd hh.mm wd) | Programmed<br>flow rate<br>(I/min) | Elapsed<br>time<br>(hh.mm.ss) | Average<br>flow rate<br>Qs (I/min) | Average<br>flow rate Qa<br>(I/min) | Deviation<br>flow rate<br>(%) |         | Standard<br>volume<br>(m^3) | Actual<br>volume (m^3) |
|-------------|----------------------------------------|---------------------------------------|------------------------------------|-------------------------------|------------------------------------|------------------------------------|-------------------------------|---------|-----------------------------|------------------------|
| 1           | 13/10/03 00:05                         | 13/10/03 23:55                        | Qa 38.3300                         | 22:51:43                      | 35.161                             | 38.243                             | 0.66                          | 20.886  | 18.744                      | 20.387                 |
| 2           | 13/10/04 00:05                         | 13/10/04 23:55                        | Qa 38.3300                         | 23:48:33                      | 35.24                              | 38.245                             | 0.66                          | 55.9683 | 50.342                      | 54.6352                |
| 3           | 13/10/05 00:05                         | 13/10/05 23:55                        | Qa 38.3300                         | 23:48:35                      | 35.109                             | 38.238                             | 0.68                          | 55.8471 | 50.1566                     | 54.6249                |
| 4           | 13/10/06 00:05                         | 13/10/06 23:55                        | Qa 38.3300                         | 23:48:33                      | 35.006                             | 38.236                             | 0.69                          | 56.1908 | 50.0077                     | 54.6225                |
| 5           | 13/10/07 00:05                         | 13/10/07 23:55                        | Qa 38.3300                         | 23:48:37                      | 34.931                             | 38.229                             | 0.75                          | 56.5346 | 49.903                      | 54.6146                |
| 6           | 13/10/08 00:05                         | 13/10/08 23:55                        | Qa 38.3300                         | 23:46:13                      | 35.383                             | 38.226                             | 0.76                          | 56.3912 | 50.4627                     | 54.5186                |
| 7           | 13/10/09 00:05                         | 13/10/09 23:55                        | Qa 38.3300                         | 23:48:37                      | 35.129                             | 38.23                              | 0.78                          | 56.4335 | 50.1849                     | 54.6152                |
| 8           | 13/10/10 00:05                         | 13/10/10 23:55                        | Qa 38.3300                         | 23:48:33                      | 34.873                             | 38.24                              | 0.73                          | 56.2783 | 49.8177                     | 54.6278                |
| 9           | 13/10/11 00:05                         | 13/10/11 23:55                        | Qa 38.3300                         | 22:40:10                      | 34.716                             | 38.234                             | 0.72                          | 53.6034 | 47.221                      | 52.0056                |
| 10          | 13/10/12 00:05                         | 13/10/12 23:55                        | Qa 38.3300                         | 23:48:35                      | 34.732                             | 38.236                             | 0.74                          | 56.0355 | 49.6171                     | 54.6228                |
| 11          | 13/10/13 00:05                         | 13/10/13 23:55                        | Qa 38.3300                         | 23:05:35                      | 34.82                              | 38.242                             | 0.72                          | 54.5732 | 48.2475                     | 52.9884                |
| 12          | 13/10/14 00:05                         | 13/10/14 23:55                        | Qa 38.3300                         | 23:48:30                      | 34.836                             | 38.239                             | 0.73                          | 56.1883 | 49.7632                     | 54.6238                |
| 13          | 13/10/15 00:05                         | 13/10/15 23:55                        | Qa 38.3300                         | 23:45:54                      | 34.9                               | 38.24                              | 0.76                          | 56.2259 | 49.7637                     | 54.5255                |
| 14          | 13/10/16 00:05                         | 13/10/16 23:55                        | Qa 38.3300                         | 23:48:33                      | 34.797                             | 38.236                             | 0.75                          | 56.2641 | 49.7089                     | 54.6195                |

Birżebbuġa – PM<sub>2.5</sub> Sampler Report .4



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        | 25.07                            | 101.74                         |
| 2        | 25.15                            | 101.99                         |
| 3        | 25.99                            | 101.92                         |
| 4        | 25.72                            | 101.53                         |
| 5        | 26.54                            | 101.61                         |
| 6        | 22.84                            | 101.66                         |
| 7        | 24.86                            | 101.61                         |
| 8        | 26.15                            | 101.28                         |
| 9        | 27.6                             | 101.33                         |
| 10       | 28.49                            | 101.67                         |
| 11       | 27.8                             | 101.68                         |
| 12       | 27.58                            | 101.66                         |
| 13       | 26.8                             | 101.58                         |
| 14       | 25.99                            | 101.02                         |



| Sample<br># | Effective start<br>(yy/mm/dd hh.mm wd) | Effective stop<br>(yy/mm/dd hh.mm wd) | Programmed<br>flow rate (I/min) | Elapsed<br>time<br>(hh.mm.ss) | Average<br>flow rate<br>Qs (I/min) | Average<br>flow rate Qa<br>(I/min) | Deviation<br>flow rate<br>(%) | Gas meter<br>volume<br>(m^3) | Standard<br>volume<br>(m^3) | Actual<br>volume<br>(m^3) |
|-------------|----------------------------------------|---------------------------------------|---------------------------------|-------------------------------|------------------------------------|------------------------------------|-------------------------------|------------------------------|-----------------------------|---------------------------|
| 1           | 13/10/17 00:05                         | 13/10/17 23:55                        | Qa 38.3300                      | 23:44:44                      | 35.053                             | 38.23                              | 0.76                          | 57.6606                      | 49.9413                     | 54.4681                   |
| 2           | 13/10/18 00:05                         | 13/10/18 23:55                        | Qa 38.3300                      | 23:48:34                      | 35.248                             | 38.225                             | 0.84                          | 57.7711                      | 50.3546                     | 54.6064                   |
| 3           | 13/10/19 00:05                         | 13/10/19 23:55                        | Qa 38.3300                      | 23:48:24                      | 35.369                             | 38.231                             | 0.83                          | 57.5563                      | 50.5206                     | 54.6084                   |
| 4           | 13/10/20 00:05                         | 13/10/20 23:55                        | Qa 38.3300                      | 23:48:34                      | 35.43                              | 38.229                             | 0.79                          | 57.4012                      | 50.6146                     | 54.6128                   |
| 5           | 13/10/21 00:05                         | 13/10/21 23:55                        | Qa 38.3300                      | 23:34:52                      | 35.443                             | 38.223                             | 0.72                          | 56.9333                      | 50.1465                     | 54.0804                   |
| 6           | 13/10/22 00:05                         | 13/10/22 23:55                        | Qa 38.3300                      | 23:48:32                      | 35.449                             | 38.233                             | 0.79                          | 57.719                       | 50.6425                     | 54.6184                   |
| 7           | 13/10/23 00:05                         | 13/10/23 23:55                        | Qa 38.3300                      | 23:48:31                      | 35.471                             | 38.237                             | 0.88                          | 57.5953                      | 50.672                      | 54.6232                   |
| 8           | 13/10/24 00:05                         | 13/10/24 23:55                        | Qa 38.3300                      | 23:48:40                      | 35.476                             | 38.235                             | 0.85                          | 57.5665                      | 50.6831                     | 54.6255                   |
| 9           | 13/10/25 00:05                         | 13/10/25 23:55                        | Qa 38.3300                      | 23:48:34                      | 35.33                              | 38.234                             | 0.85                          | 57.609                       | 50.4707                     | 54.6201                   |
| 10          | 13/10/26 00:05                         | 13/10/26 23:55                        | Qa 38.3300                      | 23:48:30                      | 35.476                             | 38.232                             | 0.84                          | 57.5838                      | 50.6769                     | 54.6145                   |
| 11          | 13/10/27 00:05                         | 13/10/27 23:55                        | Qa 38.3300                      | 23:48:35                      | 35.573                             | 38.234                             | 0.87                          | 57.607                       | 50.8192                     | 54.6201                   |
| 12          | 13/10/28 00:05                         | 13/10/28 23:55                        | Qa 38.3300                      | 23:48:36                      | 35.497                             | 38.234                             | 0.83                          | 57.4822                      | 50.7114                     | 54.6206                   |
| 13          | 13/10/29 00:05                         | 13/10/29 23:55                        | Qa 38.3300                      | 23:48:37                      | 35.373                             | 38.229                             | 0.89                          | 57.5664                      | 50.5344                     | 54.6134                   |
| 14          | 13/10/30 00:05                         | 13/10/30 23:55                        | Qa 38.3300                      | 23:48:35                      | 35.259                             | 38.233                             | 0.85                          | 57.6493                      | 50.3705                     | 54.6191                   |





| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        | 24.83                            | 101.38                         |
| 2        | 24.07                            | 101.7                          |
| 3        | 24.27                            | 102.1                          |
| 4        | 24.73                            | 102.44                         |
| 5        | 24.26                            | 102.33                         |
| 6        | 23.87                            | 102.19                         |
| 7        | 23.52                            | 102.12                         |
| 8        | 23.38                            | 102.09                         |
| 9        | 24.54                            | 102.07                         |
| 10       | 23.56                            | 102.16                         |
| 11       | 23.02                            | 102.25                         |
| 12       | 23.13                            | 102.07                         |
| 13       | 23.08                            | 101.71                         |
| 14       | 23.52                            | 101.52                         |



| Sample<br># | Effective start<br>(yy/mm/dd hh.mm wd) | Effective stop<br>(yy/mm/dd hh.mm wd) | Programmed<br>flow rate<br>(I/min) | Elapsed<br>time<br>(hh.mm.ss) | Average<br>flow rate<br>Qs (I/min) | Average<br>flow rate Qa<br>(I/min) | Deviation<br>flow rate<br>(%) | Gas meter<br>volume (m^3) | Standard<br>volume<br>(m^3) | Actual<br>volume (m^3) |
|-------------|----------------------------------------|---------------------------------------|------------------------------------|-------------------------------|------------------------------------|------------------------------------|-------------------------------|---------------------------|-----------------------------|------------------------|
| 1           | 13/10/17 00:05                         | 13/10/17 23:55                        | Qa 38.3300                         |                               |                                    |                                    |                               |                           |                             |                        |
| 2           | 13/10/18 00:05                         | 13/10/18 23:55                        | Qa 38.3300                         |                               |                                    |                                    |                               |                           |                             |                        |
| 3           | 13/10/19 00:05                         | 13/10/19 23:55                        | Qa 38.3300                         |                               |                                    |                                    |                               |                           |                             |                        |
| 4           | 13/10/20 00:05                         | 13/10/20 23:55                        | Qa 38.3300                         |                               |                                    |                                    |                               |                           |                             |                        |
| 5           | 13/10/21 00:05                         | 13/10/21 23:55                        | Qa 38.3300                         |                               |                                    |                                    |                               |                           |                             |                        |
| 6           | 13/10/22 00:05                         | 13/10/22 23:55                        | Qa 38.3300                         |                               |                                    |                                    |                               |                           |                             |                        |
| 7           | 13/10/23 00:05                         | 13/10/23 23:55                        | Qa 38.3300                         |                               |                                    |                                    |                               |                           |                             |                        |
| 8           | 13/10/24 00:05                         | 13/10/24 23:55                        | Qa 38.3300                         | 23:48:36                      | 35.358                             | 38.191                             | 1.21                          | 58.2678                   | 50.5122                     | 54.5585                |
| 9           | 13/10/25 00:05                         | 13/10/25 23:55                        | Qa 38.3300                         | 23:48:37                      | 35.217                             | 38.189                             | 1.21                          | 58.2055                   | 50.3111                     | 54.5574                |
| 10          | 13/10/26 00:05                         | 13/10/26 23:55                        | Qa 38.3300                         | 23:48:35                      | 35.34                              | 38.177                             | 1.17                          | 58.2148                   | 50.4867                     | 54.5396                |
| 11          | 13/10/27 00:05                         | 13/10/27 23:55                        | Qa 38.3300                         | 23:48:33                      | 35.452                             | 38.185                             | 1.14                          | 58.2522                   | 50.6449                     | 54.5481                |
| 12          | 13/10/28 00:05                         | 13/10/28 23:55                        | Qa 38.3300                         | 23:48:39                      | 35.362                             | 38.18                              | 1.25                          | 58.1217                   | 50.5201                     | 54.5459                |
| 13          | 13/10/29 00:05                         | 13/10/29 23:55                        | Qa 38.3300                         | 23:48:40                      | 35.25                              | 38.181                             | 1.32                          | 58.15                     | 50.3601                     | 54.5476                |
| 14          | 13/10/30 00:05                         | 13/10/30 23:55                        | Qa 38.3300                         | 23:48:29                      | 35.138                             | 38.199                             | 1.3                           | 58.0399                   | 50.193                      | 54.5657                |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        |                                  |                                |
| 2        |                                  |                                |
| 3        |                                  |                                |
| 4        |                                  |                                |
| 5        |                                  |                                |
| 6        |                                  |                                |
| 7        |                                  |                                |
| 8        | 23.96                            | 102.07                         |
| 9        | 25.2                             | 102.09                         |
| 10       | 24.24                            | 102.15                         |
| 11       | 23.59                            | 102.23                         |
| 12       | 23.7                             | 102.02                         |
| 13       | 23.63                            | 101.67                         |
| 14       | 24.16                            | 101.48                         |



| Sample<br># | Effective start<br>(yy/mm/dd hh.mm wd) | Effective stop<br>(yy/mm/dd hh.mm wd) | Programmed<br>flow rate<br>(I/min) | Elapsed<br>time<br>(hh.mm.ss) | Average<br>flow rate<br>Qs (I/min) | Average<br>flow rate Qa<br>(I/min) | Deviation<br>flow rate<br>(%) | Gas meter<br>volume (m^3) | Standard<br>volume<br>(m^3) | Actual<br>volume (m^3) |
|-------------|----------------------------------------|---------------------------------------|------------------------------------|-------------------------------|------------------------------------|------------------------------------|-------------------------------|---------------------------|-----------------------------|------------------------|
| 1           | 13/10/17 00:05                         | 13/10/17 23:55                        | Qa 38.3300                         |                               |                                    |                                    |                               |                           |                             |                        |
| 2           | 13/10/18 00:05                         | 13/10/18 23:55                        | Qa 38.3300                         | 23:48:30                      | 35.416                             | 38.245                             | 0.43                          | 57.1649                   | 50.5074                     | 54.5407                |
| 3           | 13/10/19 00:05                         | 13/10/19 23:55                        | Qa 38.3300                         | 23:47:56                      | 35.539                             | 38.253                             | 0.47                          | 57.0125                   | 50.7677                     | 54.6436                |
| 4           | 13/10/20 00:05                         | 13/10/20 23:55                        | Qa 38.3300                         | 22:28:44                      | 35.432                             | 38.239                             | 0.47                          | 56.4592                   | 50.5945                     | 54.6017                |
| 5           | 13/10/21 00:05                         | 13/10/21 23:55                        | Qa 38.3300                         |                               |                                    |                                    |                               |                           |                             |                        |
| 6           | 13/10/22 00:05                         | 13/10/22 23:55                        | Qa 38.3300                         | 23:48:29                      | 35.42                              | 38.248                             | 0.47                          | 52.9374                   | 47.239                      | 51.0108                |
| 7           | 13/10/23 00:05                         | 13/10/23 23:55                        | Qa 38.3300                         | 23:41:18                      | 35.443                             | 38.243                             | 0.45                          | 56.7496                   | 50.6291                     | 54.6281                |
| 8           | 13/10/24 00:05                         | 13/10/24 23:55                        | Qa 38.3300                         | 23:47:39                      | 35.531                             | 38.251                             | 0.41                          | 56.6514                   | 50.5003                     | 54.3653                |
| 9           | 13/10/25 00:05                         | 13/10/25 23:55                        | Qa 38.3300                         | 23:42:46                      | 35.275                             | 38.246                             | 0.41                          | 56.9227                   | 50.3597                     | 54.6025                |
| 10          | 13/10/26 00:05                         | 13/10/26 23:55                        | Qa 38.3300                         | 23:46:32                      | 35.463                             | 38.242                             | 0.48                          | 56.6558                   | 50.4552                     | 54.4076                |
| 11          | 13/10/27 00:05                         | 13/10/27 23:55                        | Qa 38.3300                         | 23:46:03                      | 35.568                             | 38.249                             | 0.46                          | 56.8339                   | 50.7395                     | 54.5609                |
| 12          | 13/10/28 00:05                         | 13/10/28 23:55                        | Qa 38.3300                         | 23:48:15                      | 35.429                             | 38.241                             | 0.45                          | 57.1459                   | 50.5229                     | 54.5321                |
| 13          | 13/10/29 00:05                         | 13/10/29 23:55                        | Qa 38.3300                         | 23:48:38                      | 35.387                             | 38.249                             | 0.48                          | 57.2718                   | 50.5413                     | 54.6295                |
| 14          | 13/10/30 00:05                         | 13/10/30 23:55                        | Qa 38.3300                         | 23:46:08                      | 35.168                             | 38.239                             | 0.42                          | 56.5035                   | 50.2413                     | 54.6295                |



## Birżebbuġa – PM<sub>10</sub> Sampler Report 5

| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        |                                  |                                |
| 2        | 21.65                            | 101.63                         |
| 3        | 23.45                            | 101.98                         |
| 4        | 23.3                             | 101.9                          |
| 5        |                                  |                                |
| 6        | 22.46                            | 101.66                         |
| 7        | 21.73                            | 101.64                         |
| 8        | 23.61                            | 101.56                         |
| 9        | 22.34                            | 101.68                         |
| 10       | 21.86                            | 101.8                          |
| 11       | 22.27                            | 101.56                         |
| 12       | 21.67                            | 101.21                         |
| 13       | 23.02                            | 101.07                         |
| 14       | 21.36                            | 101.2                          |



## Birżebbuġa – PM<sub>2.5</sub> Sampler Report 5

| Sample<br># | Effective start<br>(yy/mm/dd hh.mm wd) | Effective stop<br>(yy/mm/dd hh.mm wd) | Programmed<br>flow rate<br>(I/min) | Elapsed<br>time<br>(hh.mm.ss) | Average<br>flow rate<br>Qs (I/min) | Average<br>flow rate Qa<br>(I/min) | Deviation<br>flow rate<br>(%) |         | Standard<br>volume<br>(m^3) | Actual<br>volume (m^3) |
|-------------|----------------------------------------|---------------------------------------|------------------------------------|-------------------------------|------------------------------------|------------------------------------|-------------------------------|---------|-----------------------------|------------------------|
| 1           | 13/10/17 00:05                         | 13/10/17 23:55                        | Qa 38.3300                         |                               |                                    |                                    |                               |         |                             |                        |
| 2           | 13/10/18 00:05                         | 13/10/18 23:55                        | Qa 38.3300                         | 23:45:55                      | 35.081                             | 38.235                             | 0.67                          | 56.5826 | 50.0223                     | 54.5182                |
| 3           | 13/10/19 00:05                         | 13/10/19 23:55                        | Qa 38.3300                         | 23:48:39                      | 35.285                             | 38.235                             | 0.71                          | 56.5207 | 50.4092                     | 54.6246                |
| 4           | 13/10/20 00:05                         | 13/10/20 23:55                        | Qa 38.3300                         | 23:47:55                      | 35.199                             | 38.248                             | 0.69                          | 56.2097 | 50.2625                     | 54.6148                |
| 5           | 13/10/21 00:05                         | 13/10/21 23:55                        | Qa 38.3300                         |                               |                                    |                                    |                               |         |                             |                        |
| 6           | 13/10/22 00:05                         | 13/10/22 23:55                        | Qa 38.3300                         | 22:13:45                      | 35.229                             | 38.235                             | 0.76                          | 52.7554 | 46.9865                     | 50.9957                |
| 7           | 13/10/23 00:05                         | 13/10/23 23:55                        | Qa 38.3300                         | 23:48:31                      | 35.24                              | 38.234                             | 0.78                          | 56.4967 | 50.3401                     | 54.618                 |
| 8           | 13/10/24 00:05                         | 13/10/24 23:55                        | Qa 38.3300                         | 23:41:29                      | 35.383                             | 38.235                             | 0.73                          | 56.3805 | 50.2969                     | 54.3505                |
| 9           | 13/10/25 00:05                         | 13/10/25 23:55                        | Qa 38.3300                         | 23:47:38                      | 35.146                             | 38.24                              | 0.69                          | 56.524  | 50.1755                     | 54.5926                |
| 10          | 13/10/26 00:05                         | 13/10/26 23:55                        | Qa 38.3300                         | 23:42:49                      | 35.32                              | 38.227                             | 0.72                          | 56.4296 | 50.2538                     | 54.3896                |
| 11          | 13/10/27 00:05                         | 13/10/27 23:55                        | Qa 38.3300                         | 23:46:26                      | 35.372                             | 38.234                             | 0.69                          | 56.6118 | 50.4558                     | 54.538                 |
| 12          | 13/10/28 00:05                         | 13/10/28 23:55                        | Qa 38.3300                         | 23:46:03                      | 35.305                             | 38.231                             | 0.72                          | 56.5855 | 50.3467                     | 54.5182                |
| 13          | 13/10/29 00:05                         | 13/10/29 23:55                        | Qa 38.3300                         | 23:48:19                      | 35.246                             | 38.236                             | 0.72                          | 56.7245 | 50.3429                     | 54.6136                |
| 14          | 13/10/30 00:05                         | 13/10/30 23:55                        | Qa 38.3300                         | 23:48:33                      | 34.976                             | 38.24                              | 0.73                          | 56.2969 | 49.9651                     | 54.6277                |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        |                                  |                                |
| 2        | 24.68                            | 101.4                          |
| 3        | 24.11                            | 101.79                         |
| 4        | 25.92                            | 102.13                         |
| 5        |                                  |                                |
| 6        | 24.87                            | 101.89                         |
| 7        | 24.57                            | 101.82                         |
| 8        | 23.25                            | 101.78                         |
| 9        | 25.32                            | 101.79                         |
| 10       | 23.98                            | 101.87                         |
| 11       | 23.86                            | 101.96                         |
| 12       | 23.9                             | 101.79                         |
| 13       | 23.36                            | 101.42                         |
| 14       | 25.09                            | 101.22                         |



| Sample<br># | Effective start<br>(yy/mm/dd hh.mm wd) | Effective stop<br>(yy/mm/dd hh.mm wd) | Programmed<br>flow rate (I/min) | Elapsed<br>time<br>(hh.mm.ss) | Average<br>flow rate<br>Qs (I/min) | Average<br>flow rate Qa<br>(I/min) | Deviation<br>flow rate<br>(%) | Gas meter<br>volume<br>(m^3) | Standard<br>volume<br>(m^3) | Actual<br>volume<br>(m^3) |
|-------------|----------------------------------------|---------------------------------------|---------------------------------|-------------------------------|------------------------------------|------------------------------------|-------------------------------|------------------------------|-----------------------------|---------------------------|
| 1           | 13/10/31 00:05                         | 13/10/31 23:55                        | Qa 38.3300                      | 23:44:02                      | 35.397                             | 38.244                             | 0.87                          | 57.3514                      | 50.4073                     | 54.4605                   |
| 2           | 13/11/01 00:05                         | 13/11/01 23:55                        | Qa 38.3300                      | 23:48:31                      | 35.575                             | 38.235                             | 0.84                          | 57.3983                      | 50.8189                     | 54.6187                   |
| 3           | 13/11/02 00:05                         | 13/11/02 23:55                        | Qa 38.3300                      | 23:48:35                      | 35.647                             | 38.232                             | 0.89                          | 57.4762                      | 50.9258                     | 54.6187                   |
| 4           | 13/11/03 00:05                         | 13/11/03 23:55                        | Qa 38.3300                      | 23:48:34                      | 35.555                             | 38.225                             | 0.89                          | 57.576                       | 50.7926                     | 54.6059                   |
| 5           | 13/11/04 00:05                         | 13/11/04 23:55                        | Qa 38.3300                      | 23:48:35                      | 35.323                             | 38.236                             | 0.89                          | 57.3535                      | 50.4322                     | 54.6238                   |
| 6           | 13/11/05 00:05                         | 13/11/05 23:55                        | Qa 38.3300                      | 23:48:29                      | 35.269                             | 38.24                              | 0.92                          | 57.1777                      | 50.3822                     | 54.6253                   |
| 7           | 13/11/06 15:06                         | 13/11/06 23:55                        | Qa 38.3300                      | 23:47:26                      | 35.149                             | 38.225                             | 0.93                          | 57.1385                      | 50.5382                     | 54.1611                   |
| 8           | 13/11/07 00:05                         | 13/11/07 23:55                        | Qa 38.3300                      | 23:48:39                      | 35.41                              | 38.239                             | 0.79                          | 57.4625                      | 50.5881                     | 54.6297                   |
| 9           | 13/11/08 00:05                         | 13/11/08 23:55                        | Qa 38.3300                      | 23:48:30                      | 35.56                              | 38.232                             | 0.94                          | 57.3083                      | 50.7987                     | 54.6147                   |
| 10          | 13/11/09 00:05                         | 13/11/09 23:55                        | Qa 38.3300                      | 23:48:34                      | 35.451                             | 38.232                             | 0.93                          | 57.2534                      | 50.6465                     | 54.6184                   |
| 11          | 13/11/10 00:05                         | 13/11/10 23:55                        | Qa 38.3300                      | 23:48:33                      | 35.462                             | 38.237                             | 0.88                          | 57.3158                      | 50.6606                     | 54.6245                   |
| 12          | 13/11/11 00:05                         | 13/11/11 23:55                        | Qa 38.3300                      | 23:48:38                      | 35.599                             | 38.238                             | 0.82                          | 57.1494                      | 50.858                      | 54.6285                   |
| 13          | 13/11/12 00:05                         | 13/11/12 23:55                        | Qa 38.3300                      | 23:48:29                      | 35.706                             | 38.236                             | 0.87                          | 57.387                       | 51.0074                     | 54.6216                   |
| 14          | 13/11/13 00:05                         | 13/11/13 23:55                        | Qa 38.3300                      | 23:48:36                      | 35.78                              | 38.232                             | 0.88                          | 57.625                       | 51.1159                     | 54.6181                   |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        | 23.17                            | 101.77                         |
| 2        | 22.29                            | 102                            |
| 3        | 21.41                            | 101.91                         |
| 4        | 21.91                            | 101.84                         |
| 5        | 23.02                            | 101.46                         |
| 6        | 19.89                            | 100.29                         |
| 7        | 22.46                            | 100.86                         |
| 8        | 22.65                            | 101.64                         |
| 9        | 22.27                            | 101.96                         |
| 10       | 22.8                             | 101.83                         |
| 11       | 21.85                            | 101.52                         |
| 12       | 18.15                            | 100.63                         |
| 13       | 17.52                            | 100.72                         |
| 14       | 17.23                            | 100.84                         |



| Sample<br># | Effective start<br>(yy/mm/dd hh.mm wd) | Effective stop<br>(yy/mm/dd hh.mm wd) | Programmed<br>flow rate<br>(I/min) | Elapsed<br>time<br>(hh.mm.ss) | Average<br>flow rate<br>Qs (I/min) | Average<br>flow rate Qa<br>(I/min) | Deviation<br>flow rate<br>(%) | Gas meter<br>volume (m^3) | Standard<br>volume<br>(m^3) | Actual<br>volume (m^3) |
|-------------|----------------------------------------|---------------------------------------|------------------------------------|-------------------------------|------------------------------------|------------------------------------|-------------------------------|---------------------------|-----------------------------|------------------------|
| 1           | 13/10/31 00:05                         | 13/10/31 23:55                        | Qa 38.3300                         | 23:42:24                      | 35.267                             | 38.194                             | 1.35                          | 57.6852                   | 50.1642                     | 54.3266                |
| 2           | 13/11/01 00:05                         | 13/11/01 23:55                        | Qa 38.3300                         | 23:48:29                      | 35.483                             | 38.195                             | 1.3                           | 58.1916                   | 50.6871                     | 54.561                 |
| 3           | 13/11/02 00:05                         | 13/11/02 23:55                        | Qa 38.3300                         | 23:48:35                      | 35.528                             | 38.191                             | 1.3                           | 58.2816                   | 50.7544                     | 54.5575                |
| 4           | 13/11/03 00:05                         | 13/11/03 23:55                        | Qa 38.3300                         | 23:48:33                      | 35.448                             | 38.182                             | 1.31                          | 58.468                    | 50.64                       | 54.5449                |
| 5           | 13/11/04 00:05                         | 13/11/04 23:55                        | Qa 38.3300                         | 23:48:37                      | 35.204                             | 38.194                             | 1.34                          | 58.2338                   | 50.293                      | 54.5633                |
| 6           | 13/11/05 00:05                         | 13/11/05 23:55                        | Qa 38.3300                         | 23:48:34                      | 35.141                             | 38.196                             | 1.28                          | 57.7434                   | 50.2018                     | 54.5661                |
| 7           | 13/11/06 15:06                         | 13/11/06 23:55                        | Qa 38.3300                         | 23:47:01                      | 35.007                             | 38.188                             | 1.43                          | 57.8393                   | 49.9554                     | 54.4949                |
| 8           | 13/11/07 00:05                         | 13/11/07 23:55                        | Qa 38.3300                         | 23:48:40                      | 35.275                             | 38.192                             | 1.36                          | 57.9536                   | 50.3958                     | 54.563                 |
| 9           | 13/11/08 00:05                         | 13/11/08 23:55                        | Qa 38.3300                         | 23:48:36                      | 35.447                             | 38.196                             | 1.31                          | 57.9368                   | 50.6391                     | 54.5668                |
| 10          | 13/11/09 00:05                         | 13/11/09 23:55                        | Qa 38.3300                         | 23:48:40                      | 35.342                             | 38.194                             | 1.34                          | 57.9233                   | 50.4907                     | 54.5651                |
| 11          | 13/11/10 00:05                         | 13/11/10 23:55                        | Qa 38.3300                         | 23:48:35                      | 35.343                             | 38.199                             | 1.33                          | 57.9897                   | 50.4918                     | 54.5718                |
| 12          | 13/11/11 00:05                         | 13/11/11 23:55                        | Qa 38.3300                         | 23:48:36                      | 35.434                             | 38.182                             | 1.38                          | 57.6643                   | 50.6209                     | 54.5465                |
| 13          | 13/11/12 00:05                         | 13/11/12 23:55                        | Qa 38.3300                         | 23:48:41                      | 35.537                             | 38.182                             | 1.3                           | 57.8675                   | 50.771                      | 54.5508                |
| 14          | 13/11/13 00:05                         | 13/11/13 23:55                        | Qa 38.3300                         | 23:48:32                      | 35.633                             | 38.189                             | 1.2                           | 58.2086                   | 50.9022                     | 54.5538                |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        | 23.67                            | 101.7                          |
| 2        | 22.6                             | 101.95                         |
| 3        | 21.9                             | 101.85                         |
| 4        | 22.44                            | 101.83                         |
| 5        | 23.41                            | 101.43                         |
| 6        | 20.01                            | 100.08                         |
| 7        | 22.1                             | 100.43                         |
| 8        | 23.27                            | 101.59                         |
| 9        | 22.68                            | 101.87                         |
| 10       | 23.22                            | 101.76                         |
| 11       | 22.23                            | 101.41                         |
| 12       | 18.32                            | 100.37                         |
| 13       | 17.8                             | 100.48                         |
| 14       | 17.47                            | 100.62                         |



| Sample<br># | Effective start<br>(yy/mm/dd hh.mm wd) | Effective stop<br>(yy/mm/dd hh.mm wd) | Programmed<br>flow rate<br>(I/min) | Elapsed<br>time<br>(hh.mm.ss) | Average<br>flow rate<br>Qs (I/min) | Average<br>flow rate Qa<br>(I/min) | Deviation<br>flow rate<br>(%) |         | Standard<br>volume<br>(m^3) | Actual<br>volume (m^3) |
|-------------|----------------------------------------|---------------------------------------|------------------------------------|-------------------------------|------------------------------------|------------------------------------|-------------------------------|---------|-----------------------------|------------------------|
| 1           | 13/10/31 00:05                         | 13/10/31 23:55                        | Qa 38.3300                         |                               |                                    |                                    |                               |         |                             |                        |
| 2           | 13/11/01 00:05                         | 13/11/01 23:55                        | Qa 38.3300                         |                               |                                    |                                    |                               |         |                             |                        |
| 3           | 13/11/02 00:05                         | 13/11/02 23:55                        | Qa 38.3300                         | 23:32:21                      | 35.861                             | 38.259                             | 0.41                          | 56.4819 | 50.0612                     | 54.8679                |
| 4           | 13/11/03 00:05                         | 13/11/03 23:55                        | Qa 38.3300                         | 23:48:33                      | 35.624                             | 38.245                             | 0.45                          | 57.1805 | 50.8898                     | 54.635                 |
| 5           | 13/11/04 00:05                         | 13/11/04 23:55                        | Qa 38.3300                         | 23:46:17                      | 35.31                              | 38.245                             | 0.44                          | 57.0271 | 50.3611                     | 54.5497                |
| 6           | 13/11/05 00:05                         | 13/11/05 23:55                        | Qa 38.3300                         | 23:48:39                      | 35.204                             | 38.242                             | 0.41                          | 56.8667 | 50.2945                     | 54.6352                |
| 7           | 13/11/06 15:06                         | 13/11/06 23:55                        | Qa 38.3300                         | 23:45:32                      | 35.102                             | 38.32                              | 0.45                          | 56.678  | 50.9245                     | 54.365                 |
| 8           | 13/11/07 00:05                         | 13/11/07 23:55                        | Qa 38.3300                         | 23:48:37                      | 35.401                             | 38.255                             | 0.44                          | 56.7911 | 50.5753                     | 54.6513                |
| 9           | 13/11/08 00:05                         | 13/11/08 23:55                        | Qa 38.3300                         | 23:39:04                      | 35.603                             | 38.248                             | 0.43                          | 56.6562 | 50.5223                     | 54.2761                |
| 10          | 13/11/09 00:05                         | 13/11/09 23:55                        | Qa 38.3300                         | 23:48:35                      | 35.453                             | 38.246                             | 0.45                          | 57.0744 | 50.6468                     | 54.6351                |
| 11          | 13/11/10 00:05                         | 13/11/10 23:55                        | Qa 38.3300                         | 23:48:36                      | 35.385                             | 38.225                             | 0.59                          | 56.9666 | 50.5511                     | 54.6087                |
| 12          | 13/11/11 00:05                         | 13/11/11 23:55                        | Qa 38.3300                         | 23:48:36                      | 35.566                             | 38.233                             | 0.56                          | 56.7912 | 50.8092                     | 54.6191                |
| 13          | 13/11/12 00:05                         | 13/11/12 23:55                        | Qa 38.3300                         | 23:48:30                      | 35.682                             | 38.228                             | 0.57                          | 56.7938 | 50.9717                     | 54.609                 |
| 14          | 13/11/13 00:05                         | 13/11/13 23:55                        | Qa 38.3300                         | 23:48:32                      | 35.81                              | 38.229                             | 0.58                          | 56.8003 | 51.1555                     | 54.6107                |

## Birżebbuġa – PM<sub>10</sub> Sampler Report 6



te

| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        |                                  |                                |
| 2        |                                  |                                |
| 3        | 18.79                            | 101.54                         |
| 4        | 20.26                            | 101.41                         |
| 5        | 21.68                            | 101                            |
| 6        | 19.43                            | 99.94                          |
| 7        | 20.19                            | 100.34                         |
| 8        | 21.59                            | 101.21                         |
| 9        | 20.8                             | 101.53                         |
| 10       | 21.61                            | 101.39                         |
| 11       | 21.21                            | 101.11                         |
| 12       | 17.54                            | 100.34                         |
| 13       | 16.79                            | 100.42                         |
| 14       | 16.16                            | 100.56                         |



## Birżebbuġa – PM<sub>2.5</sub> Sampler Report 6

| Sample<br># | Effective start<br>(yy/mm/dd hh.mm wd) | Effective stop<br>(yy/mm/dd hh.mm wd) | Programmed<br>flow rate<br>(I/min) | Elapsed<br>time<br>(hh.mm.ss) | Average<br>flow rate<br>Qs (I/min) | Average<br>flow rate Qa<br>(I/min) | Deviation<br>flow rate<br>(%) |         | Standard<br>volume<br>(m^3) | Actual<br>volume (m^3) |
|-------------|----------------------------------------|---------------------------------------|------------------------------------|-------------------------------|------------------------------------|------------------------------------|-------------------------------|---------|-----------------------------|------------------------|
| 1           | 13/10/31 00:05                         | 13/10/31 23:55                        | Qa 38.3300                         |                               |                                    |                                    |                               |         |                             |                        |
| 2           | 13/11/01 00:05                         | 13/11/01 23:55                        | Qa 38.3300                         |                               |                                    |                                    |                               |         |                             |                        |
| 3           | 13/11/02 00:05                         | 13/11/02 23:55                        | Qa 38.3300                         | 23:48:34                      | 35.448                             | 38.238                             | 0.7                           | 56.612  | 50.6392                     | 54.6255                |
| 4           | 13/11/03 00:05                         | 13/11/03 23:55                        | Qa 38.3300                         | 23:46:08                      | 35.204                             | 38.234                             | 0.74                          | 56.39   | 50.2053                     | 54.5268                |
| 5           | 13/11/04 00:05                         | 13/11/04 23:55                        | Qa 38.3300                         | 23:48:32                      | 35.115                             | 38.239                             | 0.71                          | 56.1592 | 50.1629                     | 54.6262                |
| 6           | 13/11/05 00:05                         | 13/11/05 23:55                        | Qa 38.3300                         | 23:28:16                      | 34.992                             | 38.23                              | 0.74                          | 55.5199 | 49.2769                     | 53.8378                |
| 7           | 13/11/06 15:06                         | 13/11/06 23:55                        | Qa 38.3300                         | 23:48:34                      | 35.232                             | 38.231                             | 0.73                          | 56.5956 | 50.33                       | 54.6152                |
| 8           | 13/11/07 00:05                         | 13/11/07 23:55                        | Qa 38.3300                         | 23:39:03                      | 35.446                             | 38.234                             | 0.72                          | 56.3284 | 50.2986                     | 54.255                 |
| 9           | 13/11/08 00:05                         | 13/11/08 23:55                        | Qa 38.3300                         | 23:48:31                      | 35.326                             | 38.228                             | 0.76                          | 56.7089 | 50.4643                     | 54.6088                |
| 10          | 13/11/09 00:05                         | 13/11/09 23:55                        | Qa 38.3300                         | 23:48:37                      | 35.32                              | 38.238                             | 0.68                          | 56.606  | 50.4582                     | 54.6265                |
| 11          | 13/11/10 00:05                         | 13/11/10 23:55                        | Qa 38.3300                         | 23:48:34                      | 35.45                              | 38.234                             | 0.7                           | 56.3157 | 50.6435                     | 54.6196                |
| 12          | 13/11/11 00:05                         | 13/11/11 23:55                        | Qa 38.3300                         | 23:48:34                      | 35.529                             | 38.237                             | 0.69                          | 56.4888 | 50.7552                     | 54.6214                |
| 13          | 13/11/12 00:05                         | 13/11/12 23:55                        | Qa 38.3300                         | 23:48:37                      | 35.627                             | 38.229                             | 0.71                          | 56.7139 | 50.8974                     | 54.6131                |
| 14          | 13/11/13 00:05                         | 13/11/13 23:55                        | Qa 38.3300                         | 23:48:34                      | 35.448                             | 38.238                             | 0.7                           | 56.612  | 50.6392                     | 54.6255                |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        |                                  |                                |
| 2        |                                  |                                |
| 3        | 20.15                            | 101.55                         |
| 4        | 21.98                            | 101.52                         |
| 5        | 22.91                            | 101.15                         |
| 6        | 20.12                            | 99.93                          |
| 7        | 21.82                            | 100.18                         |
| 8        | 23.24                            | 101.35                         |
| 9        | 22.37                            | 101.66                         |
| 10       | 23                               | 101.55                         |
| 11       | 22.14                            | 101.21                         |
| 12       | 18.29                            | 100.27                         |
| 13       | 17.89                            | 100.35                         |
| 14       | 17.38                            | 100.47                         |



| Sample<br># | Effective start<br>(yy/mm/dd hh.mm wd) | Effective stop<br>(yy/mm/dd hh.mm wd) | Programmed<br>flow rate (I/min) | Elapsed<br>time<br>(hh.mm.ss) | Average<br>flow rate<br>Qs (I/min) | Average<br>flow rate Qa<br>(I/min) | Deviation<br>flow rate<br>(%) | Gas meter<br>volume<br>(m^3) | Standard<br>volume<br>(m^3) | Actual<br>volume<br>(m^3) |
|-------------|----------------------------------------|---------------------------------------|---------------------------------|-------------------------------|------------------------------------|------------------------------------|-------------------------------|------------------------------|-----------------------------|---------------------------|
| 1           | 13/11/14 00:05                         | 13/11/14 23:55                        | Qa 38.3300                      | 23:39:00                      | 35.649                             | 38.237                             | 0.86                          | 57.0365                      | 50.5867                     | 54.2583                   |
| 2           | 13/11/15 00:05                         | 13/11/15 23:55                        | Qa 38.3300                      | 23:48:34                      | 35.716                             | 38.235                             | 0.97                          | 57.1339                      | 51.0233                     | 54.6213                   |
| 3           | 13/11/16 00:05                         | 13/11/16 23:55                        | Qa 38.3300                      | 23:48:39                      | 35.787                             | 38.241                             | 0.87                          | 57.0988                      | 51.1261                     | 54.6329                   |
| 4           | 13/11/17 00:05                         | 13/11/17 23:55                        | Qa 38.3300                      | 23:48:34                      | 35.871                             | 38.228                             | 0.94                          | 57.1506                      | 51.244                      | 54.6106                   |
| 5           | 13/11/18 00:05                         | 13/11/18 23:55                        | Qa 38.3300                      | 23:48:39                      | 35.501                             | 38.227                             | 0.8                           | 56.6984                      | 50.7179                     | 54.6143                   |
| 6           | 13/11/19 00:05                         | 13/11/19 23:55                        | Qa 38.3300                      | 23:48:34                      | 35.342                             | 38.228                             | 0.89                          | 56.7227                      | 50.4883                     | 54.6104                   |
| 7           | 13/11/20 00:05                         | 13/11/20 23:55                        | Qa 38.3300                      | 23:48:34                      | 35.493                             | 38.23                              | 0.79                          | 56.816                       | 50.7061                     | 54.6162                   |
| 8           | 13/11/21 00:05                         | 13/11/21 23:55                        | Qa 38.3300                      | 23:48:35                      | 35.569                             | 38.239                             | 0.86                          | 56.9791                      | 50.8137                     | 54.6274                   |
| 9           | 13/11/22 00:05                         | 13/11/22 23:55                        | Qa 38.3300                      | 23:48:35                      | 35.575                             | 38.229                             | 0.88                          | 56.8862                      | 50.8223                     | 54.6133                   |
| 10          | 13/11/23 00:05                         | 13/11/23 23:55                        | Qa 38.3300                      | 23:48:34                      | 35.658                             | 38.239                             | 0.89                          | 56.9993                      | 50.94                       | 54.625                    |
| 11          | 13/11/24 00:05                         | 13/11/24 23:55                        | Qa 38.3300                      | 23:48:37                      | 35.813                             | 38.215                             | 0.85                          | 56.885                       | 51.1621                     | 54.5944                   |
| 12          | 13/11/25 00:05                         | 13/11/25 23:55                        | Qa 38.3300                      | 23:48:34                      | 36.049                             | 38.233                             | 0.88                          | 57.0301                      | 51.498                      | 54.6179                   |
| 13          | 13/11/26 00:05                         | 13/11/26 23:55                        | Qa 38.3300                      | 23:48:35                      | 36.255                             | 38.235                             | 0.9                           | 56.9295                      | 51.7926                     | 54.6225                   |
| 14          | 13/11/27 00:05                         | 13/11/27 23:55                        | Qa 38.3300                      | 23:48:37                      | 36.593                             | 38.23                              | 0.88                          | 57.1502                      | 52.2773                     | 54.6151                   |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        | 19                               | 101.07                         |
| 2        | 18.38                            | 101.05                         |
| 3        | 19.18                            | 101.51                         |
| 4        | 19.25                            | 101.81                         |
| 5        | 20.62                            | 101.23                         |
| 6        | 20.74                            | 100.82                         |
| 7        | 20.06                            | 101.01                         |
| 8        | 18.92                            | 100.81                         |
| 9        | 17.81                            | 100.47                         |
| 10       | 17.2                             | 100.47                         |
| 11       | 15.72                            | 100.45                         |
| 12       | 14.36                            | 100.59                         |
| 13       | 13.8                             | 100.96                         |
| 14       | 13.41                            | 101.78                         |
| L        |                                  |                                |



| Sample | Effective start     | Effective stop      | Programmed           | Elapsed            | Average                 | Average                 | Deviation        | Gas meter    | Standard        | Actual       |
|--------|---------------------|---------------------|----------------------|--------------------|-------------------------|-------------------------|------------------|--------------|-----------------|--------------|
| #      | (yy/mm/dd hh.mm wd) | (yy/mm/dd hh.mm wd) | flow rate<br>(I/min) | time<br>(hh.mm.ss) | flow rate<br>Qs (I/min) | flow rate Qa<br>(I/min) | flow rate<br>(%) | volume (m^3) | volume<br>(m^3) | volume (m^3) |
| 1      | 13/11/14 00:05      | 13/11/14 23:55      | Qa 38.3300           | 23:46:19           | 35.517                  | 38.189                  | 1.29             | 57.9564      | 50.6576         | 54.4686      |
| 2      | 13/11/15 00:05      | 13/11/15 23:55      | Qa 38.3300           | 23:48:42           | 35.533                  | 38.174                  | 1.06             | 57.6395      | 50.765          | 54.5396      |
| 3      | 13/11/16 00:05      | 13/11/16 23:55      | Qa 38.3300           | 23:48:38           | 35.601                  | 38.167                  | 1.16             | 57.6108      | 50.8627         | 54.5274      |
| 4      | 13/11/17 00:05      | 13/11/17 23:55      | Qa 38.3300           | 23:48:35           | 35.704                  | 38.174                  | 1.18             | 57.7087      | 51.006          | 54.5347      |
| 5      | 13/11/18 00:05      | 13/11/18 23:55      | Qa 38.3300           | 23:48:38           | 35.323                  | 38.166                  | 1.07             | 57.0351      | 50.4631         | 54.5267      |
| 6      | 13/11/19 00:05      | 13/11/19 23:55      | Qa 38.3300           | 23:48:35           | 35.17                   | 38.163                  | 1.12             | 57.0021      | 50.2442         | 54.5192      |
| 7      | 13/11/20 00:05      | 13/11/20 23:55      | Qa 38.3300           | 23:48:34           | 35.336                  | 38.179                  | 1.15             | 57.1514      | 50.479          | 54.5406      |
| 8      | 13/11/21 00:05      | 13/11/21 23:55      | Qa 38.3300           | 23:48:35           | 35.408                  | 38.192                  | 1.26             | 57.4097      | 50.5833         | 54.5601      |
| 9      | 13/11/22 00:05      | 13/11/22 23:55      | Qa 38.3300           | 23:48:24           | 35.411                  | 38.195                  | 1.44             | 57.3038      | 50.5802         | 54.5573      |
| 10     | 13/11/23 00:05      | 13/11/23 23:55      | Qa 38.3300           | 23:48:33           | 35.502                  | 38.211                  | 1.44             | 57.4222      | 50.7162         | 54.5857      |
| 11     | 13/11/24 00:05      | 13/11/24 23:55      | Qa 38.3300           | 23:48:32           | 35.642                  | 38.197                  | 1.44             | 57.3082      | 50.9149         | 54.5658      |
| 12     | 13/11/25 00:05      | 13/11/25 23:55      | Qa 38.3300           | 23:48:33           | 35.872                  | 38.209                  | 1.45             | 57.532       | 51.2441         | 54.5827      |
| 13     | 13/11/26 00:05      | 13/11/26 23:55      | Qa 38.3300           | 23:48:35           | 36.042                  | 38.198                  | 1.62             | 57.3646      | 51.4892         | 54.5692      |
| 14     | 13/11/27 00:05      | 13/11/27 23:55      | Qa 38.3300           | 23:48:39           | 36.407                  | 38.214                  | 1.45             | 57.7262      | 52.0123         | 54.5946      |



| Average ambient temperature (°C) | Average ambient pressure (kPa)                                                                                                                                               |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19.2                             | 100.89                                                                                                                                                                       |
| 18.73                            | 100.81                                                                                                                                                                       |
| 19.52                            | 101.3                                                                                                                                                                        |
| 19.63                            | 101.61                                                                                                                                                                       |
| 20.96                            | 101                                                                                                                                                                          |
| 21.09                            | 100.62                                                                                                                                                                       |
| 20.36                            | 100.8                                                                                                                                                                        |
| 19.22                            | 100.58                                                                                                                                                                       |
| 18.06                            | 100.18                                                                                                                                                                       |
| 17.43                            | 100.18                                                                                                                                                                       |
| 15.96                            | 100.1                                                                                                                                                                        |
| 14.45                            | 100.19                                                                                                                                                                       |
| 14.01                            | 100.54                                                                                                                                                                       |
| 13.63                            | 101.38                                                                                                                                                                       |
|                                  | 19.2         18.73         19.52         19.63         20.96         21.09         20.36         19.22         18.06         17.43         15.96         14.45         14.01 |



| Sample | Effective start     | Effective stop      | Programmed           | Elapsed            | Average                 | Average                 | Deviation        | Gas meter    | Standard        | Actual       |
|--------|---------------------|---------------------|----------------------|--------------------|-------------------------|-------------------------|------------------|--------------|-----------------|--------------|
| #      | (yy/mm/dd hh.mm wd) | (yy/mm/dd hh.mm wd) | flow rate<br>(I/min) | time<br>(hh.mm.ss) | flow rate<br>Qs (I/min) | flow rate Qa<br>(I/min) | flow rate<br>(%) | volume (m^3) | volume<br>(m^3) | volume (m^3) |
| 1      | 13/11/14 00:05      | 13/11/14 23:55      | Qa 38.3300           | 23:41:11           | 35.74                   | 38.232                  | 0.54             | 56.5237      | 50.7933         | 54.3347      |
| 2      | 13/11/15 00:05      | 13/11/15 23:55      | Qa 38.3300           | 23:48:35           | 35.716                  | 38.237                  | 0.52             | 56.9015      | 51.023          | 54.6237      |
| 3      | 13/11/16 00:05      | 13/11/16 23:55      | Qa 38.3300           | 23:48:34           | 35.745                  | 38.249                  | 0.43             | 56.9271      | 51.0631         | 54.6404      |
| 4      | 13/11/17 00:05      | 13/11/17 23:55      | Qa 38.3300           | 23:48:37           | 35.909                  | 38.245                  | 0.47             | 56.6445      | 51.3012         | 54.6392      |
| 5      | 13/11/18 00:05      | 13/11/18 23:55      | Qa 38.3300           | 23:48:36           | 35.41                   | 38.23                   | 0.41             | 56.1717      | 50.5872         | 54.6152      |
| 6      | 13/11/19 00:05      | 13/11/19 23:55      | Qa 38.3300           | 23:48:32           | 35.286                  | 38.25                   | 0.45             | 57.0277      | 50.4063         | 54.6408      |
| 7      | 13/11/20 00:05      | 13/11/20 23:55      | Qa 38.3300           | 23:48:39           | 35.429                  | 38.246                  | 0.5              | 57.195       | 50.6152         | 54.6407      |
| 8      | 13/11/21 00:05      | 13/11/21 23:55      | Qa 38.3300           | 23:48:42           | 35.472                  | 38.249                  | 0.44             | 57.3245      | 50.6786         | 54.6458      |
| 9      | 13/11/22 00:05      | 13/11/22 23:55      | Qa 38.3300           | 23:48:40           | 35.538                  | 38.245                  | 0.47             | 57.1458      | 50.771          | 54.6407      |
| 10     | 13/11/23 00:05      | 13/11/23 23:55      | Qa 38.3300           | 23:48:38           | 35.627                  | 38.249                  | 0.49             | 57.3579      | 50.8975         | 54.641       |
| 11     | 13/11/24 00:05      | 13/11/24 23:55      | Qa 38.3300           | 23:48:29           | 35.785                  | 38.25                   | 0.47             | 57.2727      | 51.1176         | 54.639       |
| 12     | 13/11/25 00:05      | 13/11/25 23:55      | Qa 38.3300           | 23:48:34           | 36.058                  | 38.249                  | 0.48             | 57.4293      | 51.5113         | 54.6411      |
| 13     | 13/11/26 00:05      | 13/11/26 23:55      | Qa 38.3300           | 23:48:36           | 36.269                  | 38.249                  | 0.49             | 57.2295      | 51.8134         | 54.6416      |
| 14     | 13/11/27 00:05      | 13/11/27 23:55      | Qa 38.3300           | 23:48:37           | 36.622                  | 38.244                  | 0.44             | 57.4911      | 52.3186         | 54.6353      |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        | 17.27                            | 17.27                          |
| 2        | 17.5                             | 17.5                           |
| 3        | 18.6                             | 18.6                           |
| 4        | 18.13                            | 18.13                          |
| 5        | 20.54                            | 20.54                          |
| 6        | 20.33                            | 20.33                          |
| 7        | 19.7                             | 19.7                           |
| 8        | 18.78                            | 18.78                          |
| 9        | 17.38                            | 17.38                          |
| 10       | 16.66                            | 16.66                          |
| 11       | 15.43                            | 15.43                          |
| 12       | 13.75                            | 13.75                          |
| 13       | 13.16                            | 13.16                          |
| 14       | 12.67                            | 12.67                          |



| Sample | Effective start     | Effective stop      | Programmed           | Elapsed            | Average                 | Average                 | Deviation        | Gas meter    | Standard        | Actual       |
|--------|---------------------|---------------------|----------------------|--------------------|-------------------------|-------------------------|------------------|--------------|-----------------|--------------|
| #      | (yy/mm/dd hh.mm wd) | (yy/mm/dd hh.mm wd) | flow rate<br>(I/min) | time<br>(hh.mm.ss) | flow rate<br>Qs (l/min) | flow rate Qa<br>(I/min) | flow rate<br>(%) | volume (m^3) | volume<br>(m^3) | volume (m^3) |
|        |                     |                     | (.,)                 | (                  | Q3 (i, iiii)            | (,,,                    | (73)             |              | (               |              |
| 1      | 13/11/14 00:05      | 13/11/14 23:55      | Qa 38.33             | 23:46:19           | 35.514                  | 38.238                  | 0.69             | 56.6426      | 50.6537         | 54.5396      |
| 2      | 13/11/15 00:05      | 13/11/15 23:55      | Qa 38.3300           | 23:48:30           | 35.515                  | 38.238                  | 0.67             | 56.7601      | 50.7326         | 54.6226      |
| 3      | 13/11/16 00:05      | 13/11/16 23:55      | Qa 38.3300           | 23:48:39           | 35.582                  | 38.231                  | 0.7              | 56.7611      | 50.8355         | 54.6207      |
| 4      | 13/11/17 00:05      | 13/11/17 23:55      | Qa 38.3300           | 23:48:32           | 35.621                  | 38.236                  | 0.73             | 56.578       | 50.8856         | 54.6206      |
| 5      | 13/11/18 00:05      | 13/11/18 23:55      | Qa 38.3300           | 23:48:37           | 35.258                  | 38.239                  | 0.73             | 56.0401      | 50.3702         | 54.6282      |
| 6      | 13/11/19 00:05      | 13/11/19 23:55      | Qa 38.3300           | 23:48:34           | 35.189                  | 38.238                  | 0.67             | 56.0129      | 50.2699         | 54.6249      |
| 7      | 13/11/20 00:05      | 13/11/20 23:55      | Qa 38.3300           | 23:48:28           | 35.336                  | 38.236                  | 0.71             | 56.1353      | 50.4767         | 54.6195      |
| 8      | 13/11/21 00:05      | 13/11/21 23:55      | Qa 38.3300           | 23:48:36           | 35.38                   | 38.232                  | 0.72             | 56.356       | 50.5433         | 54.6177      |
| 9      | 13/11/22 00:05      | 13/11/22 23:55      | Qa 38.3300           | 23:48:38           | 35.394                  | 38.231                  | 0.73             | 56.3071      | 50.5648         | 54.6182      |
| 10     | 13/11/23 00:05      | 13/11/23 23:55      | Qa 38.3300           | 23:48:36           | 35.499                  | 38.235                  | 0.7              | 56.3458      | 50.7137         | 54.6228      |
| 11     | 13/11/24 00:05      | 13/11/24 23:55      | Qa 38.3300           | 23:48:29           | 35.641                  | 38.239                  | 0.66             | 56.2837      | 50.914          | 54.6244      |
| 12     | 13/11/25 00:05      | 13/11/25 23:55      | Qa 38.3300           | 23:48:32           | 35.88                   | 38.23                   | 0.73             | 56.5567      | 51.2561         | 54.6129      |
| 13     | 13/11/26 00:05      | 13/11/26 23:55      | Qa 38.3300           | 23:48:35           | 36.079                  | 38.236                  | 0.65             | 56.4372      | 51.5419         | 54.6232      |
| 14     | 13/11/27 00:05      | 13/11/27 23:55      | Qa 38.3300           | 23:48:32           | 36.395                  | 38.23                   | 0.71             | 56.841       | 51.9921         | 54.6134      |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        | 19.11                            | 100.72                         |
| 2        | 19.1                             | 100.72                         |
| 3        | 19.83                            | 101.18                         |
| 4        | 20.38                            | 101.47                         |
| 5        | 21.7                             | 100.88                         |
| 6        | 21.07                            | 100.47                         |
| 7        | 20.39                            | 100.66                         |
| 8        | 19.44                            | 100.47                         |
| 9        | 18.27                            | 100.11                         |
| 10       | 17.41                            | 100.1                          |
| 11       | 16.16                            | 100.06                         |
| 12       | 14.57                            | 100.2                          |
| 13       | 14                               | 100.54                         |
| 14       | 13.84                            | 101.38                         |



| Sample<br># | Effective start<br>(yy/mm/dd hh.mm wd) | Effective stop<br>(yy/mm/dd hh.mm wd) | Programmed<br>flow rate (I/min) | Elapsed<br>time<br>(hh.mm.ss) | Average<br>flow rate<br>Qs (I/min) | Average<br>flow rate Qa<br>(I/min) | Deviation<br>flow rate<br>(%) | Gas meter<br>volume<br>(m^3) | Standard<br>volume<br>(m^3) | Actual<br>volume<br>(m^3) |
|-------------|----------------------------------------|---------------------------------------|---------------------------------|-------------------------------|------------------------------------|------------------------------------|-------------------------------|------------------------------|-----------------------------|---------------------------|
| 1           | 13/11/28 00:05                         | 13/11/28 23:55                        | Qa 38.3300                      |                               |                                    |                                    |                               |                              |                             |                           |
| 2           | 13/11/29 00:05                         | 13/11/29 23:55                        | Qa 38.3300                      |                               |                                    |                                    |                               |                              |                             |                           |
| 3           | 13/11/30 00:05                         | 13/11/30 23:55                        | Qa 38.3300                      |                               |                                    |                                    |                               |                              |                             |                           |
| 4           | 13/12/01 00:05                         | 13/12/01 23:55                        | Qa 38.3300                      |                               |                                    |                                    |                               |                              |                             |                           |
| 5           | 13/12/02 00:05                         | 13/12/02 23:55                        | Qa 38.3300                      |                               |                                    |                                    |                               |                              |                             |                           |
| 6           | 13/12/03 00:05                         | 13/12/03 23:55                        | Qa 38.3300                      |                               |                                    |                                    |                               |                              |                             |                           |
| 7           | 13/12/04 00:05                         | 13/12/04 23:55                        | Qa 38.3300                      |                               |                                    |                                    |                               |                              |                             |                           |
| 8           | 13/12/05 00:05                         | 13/12/05 23:55                        | Qa 38.3300                      |                               |                                    |                                    |                               |                              |                             |                           |
| 9           | 13/12/06 00:05                         | 13/12/06 23:55                        | Qa 38.3300                      |                               |                                    |                                    |                               |                              |                             |                           |
| 10          | 13/12/07 00:05                         | 13/12/07 23:55                        | Qa 38.3300                      |                               |                                    |                                    |                               |                              |                             |                           |
| 11          | 13/12/08 00:05                         | 13/12/08 23:55                        | Qa 38.3300                      |                               |                                    |                                    |                               |                              |                             |                           |
| 12          | 13/12/09 00:05                         | 13/12/09 23:55                        | Qa 38.3300                      |                               |                                    |                                    |                               |                              |                             |                           |
| 13          | 13/12/10 00:05                         | 13/12/10 23:55                        | Qa 38.3300                      |                               |                                    |                                    |                               |                              |                             |                           |
| 14          | 13/12/11 00:05                         | 13/12/11 23:55                        | Qa 38.3300                      |                               |                                    |                                    |                               |                              |                             |                           |



| - |
|---|



| Sample | Effective start     | Effective stop      | Programmed           | Elapsed            | Average                 | Average                 | Deviation        | Gas meter    | Standard        | Actual       |
|--------|---------------------|---------------------|----------------------|--------------------|-------------------------|-------------------------|------------------|--------------|-----------------|--------------|
| #      | (yy/mm/dd hh.mm wd) | (yy/mm/dd hh.mm wd) | flow rate<br>(I/min) | time<br>(hh.mm.ss) | flow rate<br>Qs (l/min) | flow rate Qa<br>(I/min) | flow rate<br>(%) | volume (m^3) | volume<br>(m^3) | volume (m^3) |
| 1      | 13/11/28 00:05      | 13/11/28 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 2      | 13/11/29 00:05      | 13/11/29 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 3      | 13/11/30 00:05      | 13/11/30 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 4      | 13/12/01 00:05      | 13/12/01 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 5      | 13/12/02 00:05      | 13/12/02 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 6      | 13/12/03 00:05      | 13/12/03 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 7      | 13/12/04 00:05      | 13/12/04 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 8      | 13/12/05 00:05      | 13/12/05 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 9      | 13/12/06 00:05      | 13/12/06 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 10     | 13/12/07 00:05      | 13/12/07 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 11     | 13/12/08 00:05      | 13/12/08 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 12     | 13/12/09 00:05      | 13/12/09 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 13     | 13/12/10 00:05      | 13/12/10 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 14     | 13/12/11 00:05      | 13/12/11 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        |                                  |                                |
| 2        |                                  |                                |
| 3        |                                  |                                |
| 4        |                                  |                                |
| 5        |                                  |                                |
| 6        |                                  |                                |
| 7        |                                  |                                |
| 8        |                                  |                                |
| 9        |                                  |                                |
| 10       |                                  |                                |
| 11       |                                  |                                |
| 12       |                                  |                                |
| 13       |                                  |                                |
| 14       |                                  |                                |



| Sample | Effective start     | Effective stop      | Programmed | Elapsed    | Average    | Average | Deviation | Gas meter    | Standard | Actual       |
|--------|---------------------|---------------------|------------|------------|------------|---------|-----------|--------------|----------|--------------|
| #      | (yy/mm/dd hh.mm wd) | (yy/mm/dd hh.mm wd) |            | time       |            |         |           | volume (m^3) |          | volume (m^3) |
|        |                     |                     | (l/min)    | (hh.mm.ss) | Qs (l/min) | (I/min) | (%)       |              | (m^3)    |              |
| 1      | 13/11/28 00:05      | 13/11/28 23:55      | Qa 38.3300 |            |            |         |           |              |          |              |
| 2      | 13/11/29 00:05      | 13/11/29 23:55      | Qa 38.3300 |            |            |         |           |              |          |              |
| 3      | 13/11/30 00:05      | 13/11/30 23:55      | Qa 38.3300 |            |            |         |           |              |          |              |
| 4      | 13/12/01 00:05      | 13/12/01 23:55      | Qa 38.3300 |            |            |         |           |              |          |              |
| 5      | 13/12/02 00:05      | 13/12/02 23:55      | Qa 38.3300 |            |            |         |           |              |          |              |
| 6      | 13/12/03 00:05      | 13/12/03 23:55      | Qa 38.3300 |            |            |         |           |              |          |              |
| 7      | 13/12/04 00:05      | 13/12/04 23:55      | Qa 38.3300 |            |            |         |           |              |          |              |
| 8      | 13/12/05 00:05      | 13/12/05 23:55      | Qa 38.3300 |            |            |         |           |              |          |              |
| 9      | 13/12/06 00:05      | 13/12/06 23:55      | Qa 38.3300 |            |            |         |           |              |          |              |
| 10     | 13/12/07 00:05      | 13/12/07 23:55      | Qa 38.3300 |            |            |         |           |              |          |              |
| 11     | 13/12/08 00:05      | 13/12/08 23:55      | Qa 38.3300 |            |            |         |           |              |          |              |
| 12     | 13/12/09 00:05      | 13/12/09 23:55      | Qa 38.3300 |            |            |         |           |              |          |              |
| 13     | 13/12/10 00:05      | 13/12/10 23:55      | Qa 38.3300 |            |            |         |           |              |          |              |
| 14     | 13/12/11 00:05      | 13/12/11 23:55      | Qa 38.3300 |            |            |         |           |              |          |              |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        |                                  |                                |
| 2        |                                  |                                |
| 3        |                                  |                                |
| 4        |                                  |                                |
| 5        |                                  |                                |
| 6        |                                  |                                |
| 7        |                                  |                                |
| 8        |                                  |                                |
| 9        |                                  |                                |
| 10       |                                  |                                |
| 11       |                                  |                                |
| 12       |                                  |                                |
| 13       |                                  |                                |
| 14       |                                  |                                |



| Sample | Effective start     | Effective stop      | Programmed           | Elapsed            | Average                 | Average                 | Deviation        | Gas meter    | Standard        | Actual       |
|--------|---------------------|---------------------|----------------------|--------------------|-------------------------|-------------------------|------------------|--------------|-----------------|--------------|
| #      | (yy/mm/dd hh.mm wd) | (yy/mm/dd hh.mm wd) | flow rate<br>(I/min) | time<br>(hh.mm.ss) | flow rate<br>Qs (I/min) | flow rate Qa<br>(I/min) | flow rate<br>(%) | volume (m^3) | volume<br>(m^3) | volume (m^3) |
| 1      | 13/11/28 00:05      | 13/11/28 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 2      | 13/11/29 00:05      | 13/11/29 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 3      | 13/11/30 00:05      | 13/11/30 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 4      | 13/12/01 00:05      | 13/12/01 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 5      | 13/12/02 00:05      | 13/12/02 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 6      | 13/12/03 00:05      | 13/12/03 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 7      | 13/12/04 00:05      | 13/12/04 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 8      | 13/12/05 00:05      | 13/12/05 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 9      | 13/12/06 00:05      | 13/12/06 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 10     | 13/12/07 00:05      | 13/12/07 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 11     | 13/12/08 00:05      | 13/12/08 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 12     | 13/12/09 00:05      | 13/12/09 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 13     | 13/12/10 00:05      | 13/12/10 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 14     | 13/12/11 00:05      | 13/12/11 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        |                                  |                                |
| 2        |                                  |                                |
| 3        |                                  |                                |
| 4        |                                  |                                |
| 5        |                                  |                                |
| 6        |                                  |                                |
| 7        |                                  |                                |
| 8        |                                  |                                |
| 9        |                                  |                                |
| 10       |                                  |                                |
| 11       |                                  |                                |
| 12       |                                  |                                |
| 13       |                                  |                                |
| 14       |                                  |                                |



| Sample<br># | Effective start<br>(yy/mm/dd hh.mm wd) | Effective stop<br>(yy/mm/dd hh.mm wd) | Programmed<br>flow rate (I/min) | Elapsed<br>time<br>(hh.mm.ss) | Average<br>flow rate<br>Qs (I/min) | Average<br>flow rate Qa<br>(I/min) | Deviation<br>flow rate<br>(%) | Gas meter<br>volume<br>(m^3) | Standard<br>volume<br>(m^3) | Actual<br>volume<br>(m^3) |
|-------------|----------------------------------------|---------------------------------------|---------------------------------|-------------------------------|------------------------------------|------------------------------------|-------------------------------|------------------------------|-----------------------------|---------------------------|
| 1           | 13/12/12 00:05                         | 13/12/12 23:55                        | Qa 38.3300                      |                               |                                    |                                    |                               |                              |                             |                           |
| 2           | 13/12/13 00:05                         | 13/12/13 23:55                        | Qa 38.3300                      | 23:48:40                      | 36.573                             | 38.223                             | 0.83                          | 57.1468                      | 52.2511                     | 54.6081                   |
| 3           | 13/12/14 00:05                         | 13/12/14 23:55                        | Qa 38.3300                      | 23:48:32                      | 36.651                             | 38.228                             | 0.82                          | 57.1676                      | 52.3583                     | 54.6114                   |
| 4           | 13/12/15 00:05                         | 13/12/15 23:55                        | Qa 38.3300                      | 23:48:33                      | 36.765                             | 38.232                             | 0.83                          | 57.1861                      | 52.5205                     | 54.6164                   |
| 5           | 13/12/16 00:05                         | 13/12/16 23:55                        | Qa 38.3300                      | 23:45:38                      | 36.76                              | 38.23                              | 0.81                          | 57.1336                      | 52.4072                     | 54.5027                   |
| 6           | 13/12/17 00:05                         | 13/12/17 23:55                        | Qa 38.3300                      | 23:48:33                      | 36.73                              | 38.233                             | 0.85                          | 57.2882                      | 52.47                       | 54.6174                   |
| 7           | 13/12/18 00:05                         | 13/12/18 23:55                        | Qa 38.3300                      | 23:48:34                      | 36.647                             | 38.23                              | 0.93                          | 57.3173                      | 52.3518                     | 54.614                    |
| 8           | 13/12/19 00:05                         | 13/12/19 23:55                        | Qa 38.3300                      | 23:48:31                      | 36.649                             | 38.23                              | 0.82                          | 57.1968                      | 52.3539                     | 54.6124                   |
| 9           | 13/12/20 00:05                         | 13/12/20 23:55                        | Qa 38.3300                      | 23:48:35                      | 36.465                             | 38.235                             | 0.81                          | 57.0806                      | 52.0932                     | 54.6218                   |
| 10          | 13/12/21 00:05                         | 13/12/21 23:55                        | Qa 38.3300                      | 23:48:27                      | 36.569                             | 38.24                              | 0.87                          | 57.1113                      | 52.2372                     | 54.6237                   |
| 11          | 13/12/22 00:05                         | 13/12/22 23:55                        | Qa 38.3300                      | 23:48:35                      | 36.587                             | 38.244                             | 0.83                          | 57.1664                      | 52.2672                     | 54.6339                   |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        |                                  |                                |
| 2        | 15.28                            | 102.87                         |
| 3        | 14.92                            | 102.98                         |
| 4        | 14.83                            | 102.94                         |
| 5        | 14.95                            | 102.92                         |
| 6        | 14.88                            | 102.63                         |
| 7        | 14.41                            | 102.49                         |
| 8        | 16.04                            | 102.67                         |
| 9        | 16.69                            | 103.01                         |
| 10       | 16.55                            | 103.04                         |
| 11       | 15.15                            | 102.54                         |



| Sample | Effective start     | Effective stop      | Programmed | Elapsed    | Average    | Average      | Deviation | Gas meter    | Standard | Actual       |
|--------|---------------------|---------------------|------------|------------|------------|--------------|-----------|--------------|----------|--------------|
| #      | (yy/mm/dd hh.mm wd) | (yy/mm/dd hh.mm wd) | flow rate  | time       | flow rate  | flow rate Qa | flow rate | volume (m^3) | volume   | volume (m^3) |
|        |                     |                     | (I/min)    | (hh.mm.ss) | Qs (l/min) | (l/min)      | (%)       |              | (m^3)    |              |
| 1      | 13/12/12 00:05      | 13/12/12 23:55      | Qa 38.3300 |            |            |              |           |              |          |              |
| 2      | 13/12/13 00:05      | 13/12/13 23:55      | Qa 38.3300 | 23:48:35   | 36.382     | 38.211       | 1.61      | 57.6559      | 51.977   | 54.5873      |
| 3      | 13/12/14 00:05      | 13/12/14 23:55      | Qa 38.3300 | 23:48:38   | 36.457     | 38.211       | 1.59      | 57.6752      | 52.0842  | 54.5911      |
| 4      | 13/12/15 00:05      | 13/12/15 23:55      | Qa 38.3300 | 23:48:39   | 36.57      | 38.206       | 1.73      | 57.7184      | 52.2458  | 54.5826      |
| 5      | 13/12/16 00:05      | 13/12/16 23:55      | Qa 38.3300 | 23:27:13   | 36.605     | 38.221       | 1.57      | 56.9608      | 51.5111  | 53.7845      |
| 6      | 13/12/17 00:05      | 13/12/17 23:55      | Qa 38.3300 | 23:48:27   | 36.562     | 38.211       | 1.64      | 57.9582      | 52.2266  | 54.5823      |
| 7      | 13/12/18 00:05      | 13/12/18 23:55      | Qa 38.3300 | 23:48:34   | 36.488     | 38.21        | 1.62      | 57.9934      | 52.1257  | 54.5855      |
| 8      | 13/12/19 00:05      | 13/12/19 23:55      | Qa 38.3300 | 23:48:29   | 36.466     | 38.213       | 1.69      | 58.0355      | 52.0903  | 54.5863      |
| 9      | 13/12/20 00:05      | 13/12/20 23:55      | Qa 38.3300 | 23:48:36   | 36.294     | 38.22        | 1.59      | 57.6173      | 51.8487  | 54.6003      |
| 10     | 13/12/21 00:05      | 13/12/21 23:55      | Qa 38.3300 | 23:48:36   | 36.398     | 38.214       | 1.57      | 57.6848      | 52.0003  | 54.594       |
| 11     | 13/12/22 00:05      | 13/12/22 23:55      | Qa 38.3300 | 23:48:31   | 36.415     | 38.215       | 1.61      | 57.5897      | 52.0199  | 54.591       |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        |                                  |                                |
| 2        | 15.57                            | 102.45                         |
| 3        | 15.73                            | 102.72                         |
| 4        | 15.27                            | 102.8                          |
| 5        | 15.05                            | 102.79                         |
| 6        | 15.29                            | 102.86                         |
| 7        | 15.16                            | 102.55                         |
| 8        | 14.88                            | 102.45                         |
| 9        | 16.41                            | 102.37                         |
| 10       | 17.06                            | 102.86                         |
| 11       | 16.85                            | 102.86                         |



| Sample | Effective start     | Effective stop      | Programmed | Elapsed    | Average    | Average      | Deviation | Gas meter    | Standard | Actual       |
|--------|---------------------|---------------------|------------|------------|------------|--------------|-----------|--------------|----------|--------------|
| #      | (yy/mm/dd hh.mm wd) | (yy/mm/dd hh.mm wd) | flow rate  | time       | flow rate  | flow rate Qa | flow rate | volume (m^3) | volume   | volume (m^3) |
|        |                     |                     | (l/min)    | (hh.mm.ss) | Qs (l/min) | (l/min)      | (%)       |              | (m^3)    |              |
| 1      | 13/12/12 00:05      | 13/12/12 23:55      | Qa 38.3300 |            |            |              |           |              |          |              |
| 2      | 13/12/13 00:05      | 13/12/13 23:55      | Qa 38.3300 | 23:48:37   | 36.711     | 38.244       | 0.44      | 56.9429      | 52.4469  | 54.6358      |
| 3      | 13/12/14 00:05      | 13/12/14 23:55      | Qa 38.3300 | 23:48:33   | 36.808     | 38.246       | 0.47      | 56.9402      | 52.5817  | 54.6364      |
| 4      | 13/12/15 00:05      | 13/12/15 23:55      | Qa 38.3300 | 23:48:35   | 36.886     | 38.258       | 0.47      | 57.0101      | 52.6944  | 54.6544      |
| 5      | 13/12/16 00:05      | 13/12/16 23:55      | Qa 38.3300 | 23:37:43   | 36.851     | 38.25        | 0.48      | 56.604       | 52.2445  | 54.2278      |
| 6      | 13/12/17 00:05      | 13/12/17 23:55      | Qa 38.3300 | 23:48:29   | 36.8       | 38.249       | 0.48      | 57.2471      | 52.5684  | 54.6378      |
| 7      | 13/12/18 00:05      | 13/12/18 23:55      | Qa 38.3300 | 23:48:31   | 36.671     | 38.247       | 0.53      | 57.264       | 52.3843  | 54.6363      |
| 8      | 13/12/19 00:05      | 13/12/19 23:55      | Qa 38.3300 | 23:48:40   | 36.793     | 38.253       | 0.48      | 57.6755      | 52.5648  | 54.6502      |
| 9      | 13/12/20 00:05      | 13/12/20 23:55      | Qa 38.3300 | 23:48:29   | 36.438     | 38.248       | 0.48      | 56.8347      | 52.05    | 54.6364      |
| 10     | 13/12/21 00:05      | 13/12/21 23:55      | Qa 38.3300 | 23:48:35   | 36.524     | 38.245       | 0.45      | 56.7596      | 52.1784  | 54.6366      |
| 11     | 13/12/22 00:05      | 13/12/22 23:55      | Qa 38.3300 | 23:48:28   | 36.569     | 38.236       | 0.47      | 56.5321      | 52.2367  | 54.6184      |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        |                                  |                                |
| 2        | 13.63                            | 102.38                         |
| 3        | 13.57                            | 102.73                         |
| 4        | 13.61                            | 102.76                         |
| 5        | 13.71                            | 102.71                         |
| 6        | 13.93                            | 102.66                         |
| 7        | 14.2                             | 102.46                         |
| 8        | 12.81                            | 102.22                         |
| 9        | 15.65                            | 102.49                         |
| 10       | 16.38                            | 102.81                         |
| 11       | 15.96                            | 102.81                         |



| Sample | Effective start     | Effective stop      | Programmed | Elapsed    | Average    | Average      | Deviation | Gas meter    | Standard | Actual       |
|--------|---------------------|---------------------|------------|------------|------------|--------------|-----------|--------------|----------|--------------|
| #      | (yy/mm/dd hh.mm wd) | (yy/mm/dd hh.mm wd) | flow rate  | time       | flow rate  | flow rate Qa | flow rate | volume (m^3) | volume   | volume (m^3) |
|        |                     |                     | (I/min)    | (hh.mm.ss) | Qs (I/min) | (I/min)      | (%)       |              | (m^3)    |              |
| 1      | 13/12/12 00:05      | 13/12/12 23:55      | Qa 38.3300 |            |            |              |           |              |          |              |
| 2      | 13/12/13 00:05      | 13/12/13 23:55      | Qa 38.3300 | 23:48:35   | 36.454     | 38.232       | 0.7       | 56.6413      | 52.0769  | 54.6161      |
| 3      | 13/12/14 00:05      | 13/12/14 23:55      | Qa 38.3300 | 23:48:31   | 36.545     | 38.242       | 0.66      | 56.7421      | 52.205   | 54.6263      |
| 4      | 13/12/15 00:05      | 13/12/15 23:55      | Qa 38.3300 | 23:48:33   | 36.632     | 38.227       | 0.71      | 56.7765      | 52.3303  | 54.6087      |
| 5      | 13/12/16 00:05      | 13/12/16 23:55      | Qa 38.3300 | 23:41:12   | 36.61      | 38.236       | 0.72      | 56.3274      | 52.0308  | 54.3409      |
| 6      | 13/12/17 00:05      | 13/12/17 23:55      | Qa 38.3300 | 23:48:36   | 36.568     | 38.234       | 0.73      | 56.7359      | 52.24    | 54.6213      |
| 7      | 13/12/18 00:05      | 13/12/18 23:55      | Qa 38.3300 | 23:48:39   | 36.447     | 38.23        | 0.73      | 56.6896      | 52.0698  | 54.6149      |
| 8      | 13/12/19 00:05      | 13/12/19 23:55      | Qa 38.3300 | 23:48:35   | 36.53      | 38.251       | 0.66      | 57.2604      | 52.1854  | 54.6438      |
| 9      | 13/12/20 00:05      | 13/12/20 23:55      | Qa 38.3300 | 23:48:37   | 36.259     | 38.229       | 0.7       | 56.7965      | 51.7998  | 54.6146      |
| 10     | 13/12/21 00:05      | 13/12/21 23:55      | Qa 38.3300 | 23:48:37   | 36.361     | 38.23        | 0.69      | 56.7634      | 51.9457  | 54.6166      |
| 11     | 13/12/22 00:05      | 13/12/22 23:55      | Qa 38.3300 | 23:48:33   | 36.408     | 38.235       | 0.65      | 56.86        | 52.0105  | 54.6206      |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        |                                  |                                |
| 2        | 14.97                            | 102.19                         |
| 3        | 15.05                            | 102.45                         |
| 4        | 14.83                            | 102.66                         |
| 5        | 14.87                            | 102.48                         |
| 6        | 15.14                            | 102.55                         |
| 7        | 15.37                            | 102.26                         |
| 8        | 14.46                            | 102.19                         |
| 9        | 16.56                            | 102.28                         |
| 10       | 17.23                            | 102.65                         |
| 11       | 16.89                            | 102.73                         |



| Sample<br># | Effective start<br>(yy/mm/dd hh.mm wd) | Effective stop<br>(yy/mm/dd hh.mm wd) | Programmed<br>flow rate (I/min) | Elapsed<br>time<br>(hh.mm.ss) | Average<br>flow rate<br>Qs (I/min) | Average<br>flow rate Qa<br>(I/min) | Deviation<br>flow rate<br>(%) | Gas meter<br>volume<br>(m^3) | Standard<br>volume<br>(m^3) | Actual<br>volume<br>(m^3) |
|-------------|----------------------------------------|---------------------------------------|---------------------------------|-------------------------------|------------------------------------|------------------------------------|-------------------------------|------------------------------|-----------------------------|---------------------------|
| 1           | 13/12/23 00:05                         | 13/12/23 23:55                        | Qa 38.3300                      | 23:39:23                      | 36.426                             | 38.233                             | 0.9                           | 56.83                        | 51.7038                     | 54.2683                   |
| 2           | 13/12/24 00:05                         | 13/12/24 23:55                        | Qa 38.3300                      | 23:48:35                      | 36.301                             | 38.235                             | 0.84                          | 57.2651                      | 51.8584                     | 54.6196                   |
| 3           | 13/12/25 00:05                         | 13/12/25 23:55                        | Qa 38.3300                      | 23:48:36                      | 36.186                             | 38.244                             | 0.79                          | 57.248                       | 51.6957                     | 54.6347                   |
| 4           | 13/12/26 00:05                         | 13/12/26 23:55                        | Qa 38.3300                      | 23:48:34                      | 36.03                              | 38.236                             | 0.88                          | 57.0051                      | 51.4706                     | 54.6208                   |
| 5           | 13/12/27 00:05                         | 13/12/27 23:55                        | Qa 38.3300                      | 23:48:31                      | 36.374                             | 38.231                             | 0.82                          | 57.137                       | 51.9611                     | 54.6133                   |
| 6           | 13/12/28 00:05                         | 13/12/28 23:55                        | Qa 38.3300                      | 23:48:33                      | 36.417                             | 38.22                              | 0.84                          | 57.3512                      | 52.0248                     | 54.6004                   |
| 7           | 13/12/29 00:05                         | 13/12/29 23:55                        | Qa 38.3300                      | 23:48:34                      | 36.411                             | 38.228                             | 0.88                          | 57.3001                      | 52.0159                     | 54.6104                   |
| 8           | 13/12/30 00:05                         | 13/12/30 23:55                        | Qa 38.3300                      | 23:48:36                      | 36.368                             | 38.234                             | 0.8                           | 57.333                       | 51.9556                     | 54.6206                   |
| 9           | 13/12/31 00:05                         | 13/12/31 23:55                        | Qa 38.3300                      | 23:34:27                      | 36.589                             | 38.232                             | 0.78                          | 56.6996                      | 51.7528                     | 54.0767                   |
| 10          | 14/01/01 00:05                         | 14/01/01 23:55                        | Qa 38.3300                      | 23:48:34                      | 36.412                             | 38.229                             | 0.81                          | 57.2841                      | 52.0185                     | 54.6124                   |
| 11          | 14/01/02 00:05                         | 14/01/02 23:55                        | Qa 38.3300                      | 23:48:37                      | 36.571                             | 38.229                             | 0.79                          | 57.3836                      | 52.2455                     | 54.6138                   |
| 12          | 14/01/03 00:05                         | 14/01/03 23:55                        | Qa 38.3300                      | 23:48:27                      | 36.428                             | 38.232                             | 0.8                           | 57.3475                      | 52.0351                     | 54.6119                   |
| 13          | 14/01/04 00:05                         | 14/01/04 23:55                        | Qa 38.3300                      | 23:48:35                      | 36.412                             | 38.226                             | 0.79                          | 57.288                       | 52.0184                     | 54.6099                   |
| 14          | 14/01/05 00:05                         | 14/01/05 23:55                        | Qa 38.3300                      | 23:48:34                      | 36.271                             | 38.231                             | 0.79                          | 57.2073                      | 51.8178                     | 54.617                    |
| 15          | 14/01/06 00:05                         | 14/01/06 23:55                        | Qa 38.3300                      | 23:48:31                      | 36.554                             | 38.228                             | 0.82                          | 57.3388                      | 52.2177                     | 54.61                     |



| Sample #                             | Average ambient temperature (°C)                                                       | Average ambient pressure (kPa)                                                                   |
|--------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 1                                    | 15.88                                                                                  | 102.6                                                                                            |
| 2                                    | 15.72                                                                                  | 101.9                                                                                            |
| 3                                    | 16.51                                                                                  | 101.92                                                                                           |
| 4                                    | 14.9                                                                                   | 101.38                                                                                           |
| 5                                    | 12                                                                                     | 101.17                                                                                           |
| 6                                    | 13.79                                                                                  | 101.71                                                                                           |
| 7                                    | 14.91                                                                                  | 102.01                                                                                           |
| 8                                    | 15.27                                                                                  | 101.92                                                                                           |
| 9                                    | 13.01                                                                                  | 101.78                                                                                           |
| 10                                   | 14.68                                                                                  | 101.95                                                                                           |
| 11                                   | 14                                                                                     | 102.08                                                                                           |
| 12                                   | 15.66                                                                                  | 102.29                                                                                           |
| 13                                   | 16.11                                                                                  | 102.51                                                                                           |
| 14                                   | 15.62                                                                                  | 102.02                                                                                           |
| 15                                   | 12.78                                                                                  | 101.8                                                                                            |
| 8<br>9<br>10<br>11<br>12<br>13<br>14 | 15.27         13.01         14.68         14         15.66         16.11         15.62 | 101.92         101.78         101.95         102.08         102.29         102.51         102.02 |



| Sample | Effective start     | Effective stop      | Programmed           | Elapsed            | Average                 | Average                 | Deviation        | Gas meter    | Standard        | Actual       |
|--------|---------------------|---------------------|----------------------|--------------------|-------------------------|-------------------------|------------------|--------------|-----------------|--------------|
| #      | (yy/mm/dd hh.mm wd) | (yy/mm/dd hh.mm wd) | flow rate<br>(I/min) | time<br>(hh.mm.ss) | flow rate<br>Qs (I/min) | flow rate Qa<br>(I/min) | flow rate<br>(%) | volume (m^3) | volume<br>(m^3) | volume (m^3) |
| 1      | 13/12/23 00:05      | 13/12/23 23:55      | Qa 38.3300           | 23:46:40           | 36.245                  | 38.2                    | 1.74             | 57.5014      | 51.7089         | 54.4985      |
| 2      | 13/12/24 00:05      | 13/12/24 23:55      | Qa 38.3300           | 23:48:39           | 36.119                  | 38.197                  | 1.74             | 57.5826      | 51.6022         | 54.5703      |
| 3      | 13/12/25 00:05      | 13/12/25 23:55      | Qa 38.3300           | 23:48:36           | 36.015                  | 38.214                  | 1.68             | 57.8537      | 51.4505         | 54.5918      |
| 4      | 13/12/26 00:05      | 13/12/26 23:55      | Qa 38.3300           | 23:48:33           | 35.832                  | 38.192                  | 1.73             | 57.3537      | 51.187          | 54.5592      |
| 5      | 13/12/27 00:05      | 13/12/27 23:55      | Qa 38.3300           | 23:48:28           | 36.177                  | 38.214                  | 1.64             | 57.6035      | 51.6777         | 54.5874      |
| 6      | 13/12/28 00:05      | 13/12/28 23:55      | Qa 38.3300           | 23:48:29           | 36.249                  | 38.216                  | 1.62             | 58.0285      | 51.7817         | 54.5905      |
| 7      | 13/12/29 00:05      | 13/12/29 23:55      | Qa 38.3300           | 23:48:26           | 36.24                   | 38.212                  | 1.62             | 58.0814      | 51.7661         | 54.5822      |
| 8      | 13/12/30 00:05      | 13/12/30 23:55      | Qa 38.3300           | 23:48:35           | 36.205                  | 38.213                  | 1.56             | 58.0186      | 51.7219         | 54.5902      |
| 9      | 13/12/31 00:05      | 13/12/31 23:55      | Qa 38.3300           | 23:34:26           | 36.389                  | 38.213                  | 1.57             | 57.1422      | 51.4694         | 54.0488      |
| 10     | 14/01/01 00:05      | 14/01/01 23:55      | Qa 38.3300           | 23:48:36           | 36.238                  | 38.205                  | 1.62             | 57.7938      | 51.7694         | 54.5786      |
| 11     | 14/01/02 00:05      | 14/01/02 23:55      | Qa 38.3300           | 23:48:35           | 36.386                  | 38.199                  | 1.52             | 58.1508      | 51.9806         | 54.57        |
| 12     | 14/01/03 00:05      | 14/01/03 23:55      | Qa 38.3300           | 23:48:35           | 36.258                  | 38.198                  | 1.6              | 58.0417      | 51.7976         | 54.5687      |
| 13     | 14/01/04 00:05      | 14/01/04 23:55      | Qa 38.3300           | 23:48:36           | 36.26                   | 38.211                  | 1.43             | 57.951       | 51.8029         | 54.5893      |
| 14     | 14/01/05 00:05      | 14/01/05 23:55      | Qa 38.3300           | 23:48:27           | 36.102                  | 38.209                  | 1.63             | 57.5998      | 51.5701         | 54.5796      |
| 15     | 14/01/06 00:05      | 14/01/06 23:55      | Qa 38.3300           | 23:48:35           | 36.359                  | 38.209                  | 1.63             | 57.731       | 51.9416         | 54.5849      |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        | 16.14                            | 102.19                         |
| 2        | 15.98                            | 101.68                         |
| 3        | 16.89                            | 101.85                         |
| 4        | 15.02                            | 100.99                         |
| 5        | 12.09                            | 100.73                         |
| 6        | 14.09                            | 101.45                         |
| 7        | 15.27                            | 101.93                         |
| 8        | 15.53                            | 101.69                         |
| 9        | 13.22                            | 101.54                         |
| 10       | 14.92                            | 101.72                         |
| 11       | 14.27                            | 102                            |
| 12       | 15.96                            | 102.25                         |
| 13       | 16.38                            | 102.5                          |
| 14       | 15.81                            | 101.64                         |
| 15       | 12.95                            | 101.36                         |



| Sample | Effective start     | Effective stop      | Programmed           | Elapsed            | Average                 | Average                 | Deviation        | Gas meter    | Standard        | Actual       |
|--------|---------------------|---------------------|----------------------|--------------------|-------------------------|-------------------------|------------------|--------------|-----------------|--------------|
| #      | (yy/mm/dd hh.mm wd) | (yy/mm/dd hh.mm wd) | flow rate<br>(I/min) | time<br>(hh.mm.ss) | flow rate<br>Qs (I/min) | flow rate Qa<br>(I/min) | flow rate<br>(%) | volume (m^3) | volume<br>(m^3) | volume (m^3) |
| 1      | 13/12/23 00:05      | 13/12/23 23:55      | Qa 38.3300           | 23:45:54           | 36.396                  | 38.244                  | 0.49             | 56.3989      | 51.8913         | 54.5325      |
| 2      | 13/12/24 00:05      | 13/12/24 23:55      | Qa 38.3300           | 23:48:38           | 36.283                  | 38.245                  | 0.47             | 56.6073      | 51.8353         | 54.6388      |
| 3      | 13/12/25 00:05      | 13/12/25 23:55      | Qa 38.3300           | 23:48:30           | 36.243                  | 38.246                  | 0.49             | 57.2409      | 51.773          | 54.6342      |
| 4      | 13/12/26 00:05      | 13/12/26 23:55      | Qa 38.3300           | 23:48:32           | 36.003                  | 38.244                  | 0.48             | 56.8262      | 51.4304         | 54.6328      |
| 5      | 13/12/27 00:05      | 13/12/27 23:55      | Qa 38.3300           | 23:48:29           | 36.439                  | 38.249                  | 0.49             | 57.0352      | 52.0527         | 54.6384      |
| 6      | 13/12/28 00:05      | 13/12/28 23:55      | Qa 38.3300           | 23:48:35           | 36.539                  | 38.265                  | 0.45             | 57.2536      | 52.1989         | 54.6643      |
| 7      | 13/12/29 00:05      | 13/12/29 23:55      | Qa 38.3300           | 23:48:31           | 36.565                  | 38.253                  | 0.45             | 57.2298      | 52.2336         | 54.6441      |
| 8      | 13/12/30 00:05      | 13/12/30 23:55      | Qa 38.3300           | 23:48:30           | 36.408                  | 38.253                  | 0.51             | 57.3384      | 52.0085         | 54.6439      |
| 9      | 13/12/31 00:05      | 13/12/31 23:55      | Qa 38.3300           | 23:48:24           | 36.613                  | 38.25                   | 0.51             | 57.1354      | 52.2971         | 54.6365      |
| 10     | 14/01/01 00:05      | 14/01/01 23:55      | Qa 38.3300           | 23:48:30           | 36.454                  | 38.25                   | 0.45             | 57.0486      | 52.074          | 54.6404      |
| 11     | 14/01/02 00:05      | 14/01/02 23:55      | Qa 38.3300           | 23:48:32           | 36.688                  | 38.242                  | 0.48             | 57.2629      | 52.4111         | 54.6316      |
| 12     | 14/01/03 00:05      | 14/01/03 23:55      | Qa 38.3300           | 23:48:33           | 36.592                  | 38.247                  | 0.43             | 57.3066      | 52.2737         | 54.6382      |
| 13     | 14/01/04 00:05      | 14/01/04 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 14     | 14/01/05 00:05      | 14/01/05 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 15     | 14/01/06 00:05      | 14/01/06 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        | 15.53                            | 102.45                         |
| 2        | 15.24                            | 101.71                         |
| 3        | 15.25                            | 101.65                         |
| 4        | 14.53                            | 101.15                         |
| 5        | 11.12                            | 101.03                         |
| 6        | 12.49                            | 101.57                         |
| 7        | 13.21                            | 101.72                         |
| 8        | 14.42                            | 101.72                         |
| 9        | 12.4                             | 101.64                         |
| 10       | 13.87                            | 101.81                         |
| 11       | 12.54                            | 101.83                         |
| 12       | 13.72                            | 102.06                         |
| 13       | 15.53                            | 102.45                         |
| 14       | 15.24                            | 101.71                         |
| 15       | 15.25                            | 101.65                         |



| Birżebbuġa – I | PM <sub>2.5</sub> | Sampler | Re | port | 10 |
|----------------|-------------------|---------|----|------|----|
|----------------|-------------------|---------|----|------|----|

| Sample | Effective start     | Effective stop      | Programmed           | Elapsed            | Average                 | Average                 | Deviation        | Gas meter    | Standard        | Actual       |
|--------|---------------------|---------------------|----------------------|--------------------|-------------------------|-------------------------|------------------|--------------|-----------------|--------------|
| #      | (yy/mm/dd hh.mm wd) | (yy/mm/dd hh.mm wd) | flow rate<br>(I/min) | time<br>(hh.mm.ss) | flow rate<br>Qs (I/min) | flow rate Qa<br>(I/min) | flow rate<br>(%) | volume (m^3) | volume<br>(m^3) | volume (m^3) |
| 1      | 13/12/23 00:05      | 13/12/23 23:55      | Qa 38.3300           | 23:41:35           | 36.227                  | 38.234                  | 0.73             | 56.097       | 51.4989         | 54.3517      |
| 2      | 13/12/24 00:05      | 13/12/24 23:55      | Qa 38.3300           | 23:48:37           | 36.115                  | 38.238                  | 0.68             | 56.092       | 51.595          | 54.6278      |
| 3      | 13/12/25 00:05      | 13/12/25 23:55      | Qa 38.3300           | 23:48:34           | 36.094                  | 38.234                  | 0.74             | 57.0884      | 51.5632         | 54.6203      |
| 4      | 13/12/26 00:05      | 13/12/26 23:55      | Qa 38.3300           | 23:48:33           | 35.862                  | 38.232                  | 0.71             | 56.6203      | 51.2303         | 54.6166      |
| 5      | 13/12/27 00:05      | 13/12/27 23:55      | Qa 38.3300           | 23:48:30           | 36.256                  | 38.232                  | 0.69             | 56.8076      | 51.792          | 54.6151      |
| 6      | 13/12/28 00:05      | 13/12/28 23:55      | Qa 38.3300           | 23:48:38           | 36.325                  | 38.244                  | 0.68             | 57.04        | 51.8954         | 54.6348      |
| 7      | 13/12/29 00:05      | 13/12/29 23:55      | Qa 38.3300           | 23:48:34           | 36.328                  | 38.238                  | 0.72             | 57.0403      | 51.897          | 54.6251      |
| 8      | 13/12/30 00:05      | 13/12/30 23:55      | Qa 38.3300           | 23:48:32           | 36.249                  | 38.249                  | 0.66             | 57.15        | 51.7822         | 54.6392      |
| 9      | 13/12/31 00:05      | 13/12/31 23:55      | Qa 38.3300           | 23:48:32           | 36.441                  | 38.235                  | 0.69             | 56.8946      | 52.0581         | 54.6218      |
| 10     | 14/01/01 00:05      | 14/01/01 23:55      | Qa 38.3300           | 23:48:33           | 36.296                  | 38.239                  | 0.67             | 56.8433      | 51.8512         | 54.627       |
| 11     | 14/01/02 00:05      | 14/01/02 23:55      | Qa 38.3300           | 23:48:37           | 36.484                  | 38.248                  | 0.68             | 57.1909      | 52.121          | 54.6415      |
| 12     | 14/01/03 00:05      | 14/01/03 23:55      | Qa 38.3300           | 23:48:33           | 36.39                   | 38.244                  | 0.64             | 57.1539      | 51.9845         | 54.6336      |
| 13     | 14/01/04 00:05      | 14/01/04 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 14     | 14/01/05 00:05      | 14/01/05 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 15     | 14/01/06 00:05      | 14/01/06 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        | 14.99                            | 16.31                          |
| 2        | 13.68                            | 16.04                          |
| 3        | 12.01                            | 16.15                          |
| 4        | 9.35                             | 15.08                          |
| 5        | 7.39                             | 11.69                          |
| 6        | 8.1                              | 13.58                          |
| 7        | 9.31                             | 14.57                          |
| 8        | 12.09                            | 15.31                          |
| 9        | 10.56                            | 13.04                          |
| 10       | 10.92                            | 14.55                          |
| 11       | 9.82                             | 13.73                          |
| 12       | 10.6                             | 14.98                          |
| 13       |                                  |                                |
| 14       |                                  |                                |
| 15       |                                  |                                |



| Sample<br># | Effective start<br>(yy/mm/dd hh.mm wd) | Effective stop<br>(yy/mm/dd hh.mm wd) | Programmed<br>flow rate (I/min) | Elapsed<br>time<br>(hh.mm.ss) | Average<br>flow rate<br>Qs (I/min) | Average<br>flow rate Qa<br>(I/min) | Deviation<br>flow rate<br>(%) | Gas meter<br>volume<br>(m^3) | Standard<br>volume<br>(m^3) | Actual<br>volume<br>(m^3) |
|-------------|----------------------------------------|---------------------------------------|---------------------------------|-------------------------------|------------------------------------|------------------------------------|-------------------------------|------------------------------|-----------------------------|---------------------------|
| 1           | 14/01/07 00:05                         | 14/01/07 23:55                        | Qa 38.3300                      | 23:47:16                      | 36.505                             | 38.227                             | 0.79                          | 57.4117                      | 52.1018                     | 54.5605                   |
| 2           | 14/01/08 00:05                         | 14/01/08 23:55                        | Qa 38.3300                      | 23:48:40                      | 36.664                             | 38.231                             | 0.89                          | 57.3583                      | 52.3807                     | 54.6169                   |
| 3           | 14/01/09 00:05                         | 14/01/09 23:55                        | Qa 38.3300                      | 23:03:05                      | 36.695                             | 38.227                             | 0.83                          | 53.0461                      | 48.5499                     | 50.577                    |
| 4           | 14/01/10 00:05                         | 14/01/10 23:55                        | Qa 38.3300                      | 23:48:34                      | 36.397                             | 38.228                             | 0.84                          | 57.2399                      | 51.9952                     | 54.6112                   |
| 5           | 14/01/11 00:05                         | 14/01/11 23:55                        | Qa 38.3300                      | 23:48:30                      | 36.263                             | 38.23                              | 0.78                          | 57.2535                      | 51.8026                     | 54.6114                   |
| 6           | 14/01/12 00:05                         | 14/01/12 23:55                        | Qa 38.3300                      | 23:48:39                      | 36.198                             | 38.233                             | 0.76                          | 57.3014                      | 51.714                      | 54.6207                   |
| 7           | 14/01/13 00:05                         | 14/01/13 23:55                        | Qa 38.3300                      | 23:48:31                      | 36.296                             | 38.238                             | 0.76                          | 57.4058                      | 51.8498                     | 54.6243                   |
| 8           | 14/01/14 00:05                         | 14/01/14 23:55                        | Qa 38.3300                      | 23:48:36                      | 36.203                             | 38.23                              | 0.79                          | 57.3378                      | 51.72                       | 54.6157                   |
| 9           | 14/01/15 00:05                         | 14/01/15 23:55                        | Qa 38.3300                      | 23:48:34                      | 36.279                             | 38.225                             | 0.85                          | 57.4046                      | 51.8272                     | 54.6071                   |
| 10          | 14/01/16 00:05                         | 14/01/16 23:55                        | Qa 38.3300                      | 23:48:28                      | 36.535                             | 38.231                             | 0.75                          | 57.488                       | 52.1882                     | 54.6116                   |
| 11          | 14/01/17 00:05                         | 14/01/17 23:55                        | Qa 38.3300                      | 23:48:36                      | 36.379                             | 38.218                             | 0.79                          | 57.1353                      | 51.9701                     | 54.5977                   |
| 12          | 14/01/18 00:05                         | 14/01/18 23:55                        | Qa 38.3300                      | 23:48:31                      | 35.889                             | 38.22                              | 0.76                          | 56.9249                      | 51.2669                     | 54.5976                   |
| 13          | 14/01/19 00:05                         | 14/01/19 23:55                        | Qa 38.3300                      | 23:24:33                      | 35.636                             | 38.223                             | 0.76                          | 56.0565                      | 50.0523                     | 53.6863                   |
| 14          | 14/01/20 00:05                         | 14/01/20 23:55                        | Qa 38.3300                      | 23:48:38                      | 35.835                             | 38.223                             | 0.76                          | 57.094                       | 51.196                      | 54.6065                   |
| 15          | 14/01/21 00:05                         | 14/01/21 23:55                        | Qa 38.3300                      | 23:48:39                      | 36.321                             | 38.221                             | 0.8                           | 57.2393                      | 51.8891                     | 54.6039                   |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        | 15.16                            | 102.38                         |
| 2        | 14.68                            | 102.67                         |
| 3        | 14                               | 102.5                          |
| 4        | 15.85                            | 102.26                         |
| 5        | 16.84                            | 102.28                         |
| 6        | 16.76                            | 102.02                         |
| 7        | 15.31                            | 101.71                         |
| 8        | 15.22                            | 101.52                         |
| 9        | 14.01                            | 101.34                         |
| 10       | 13.57                            | 101.91                         |
| 11       | 15.21                            | 102.1                          |
| 12       | 17.5                             | 101.68                         |
| 13       | 18.11                            | 100.96                         |
| 14       | 16.8                             | 101.14                         |
| 15       | 14.19                            | 101.62                         |
|          |                                  |                                |



| Sample | Effective start     | Effective stop      | Programmed           | Elapsed            | Average                 | Average                 | Deviation        | Gas meter    | Standard        | Actual       |
|--------|---------------------|---------------------|----------------------|--------------------|-------------------------|-------------------------|------------------|--------------|-----------------|--------------|
| #      | (yy/mm/dd hh.mm wd) | (yy/mm/dd hh.mm wd) | flow rate<br>(I/min) | time<br>(hh.mm.ss) | flow rate<br>Qs (I/min) | flow rate Qa<br>(I/min) | flow rate<br>(%) | volume (m^3) | volume<br>(m^3) | volume (m^3) |
| 1      | 14/01/07 00:05      | 14/01/07 23:55      | Qa 38.3300           | 23:40:50           | 36.335                  | 38.209                  | 1.63             | 57.5136      | 51.6252         | 54.2861      |
| 2      | 14/01/08 00:05      | 14/01/08 23:55      | Qa 38.3300           | 23:48:35           | 36.465                  | 38.21                   | 1.51             | 57.9939      | 52.0938         | 54.5871      |
| 3      | 14/01/09 00:05      | 14/01/09 23:55      | Qa 38.3300           | 23:03:01           | 36.477                  | 38.212                  | 1.62             | 53.6308      | 48.2598         | 50.5546      |
| 4      | 14/01/10 00:05      | 14/01/10 23:55      | Qa 38.3300           | 23:48:30           | 36.226                  | 38.211                  | 1.55             | 57.8325      | 51.7489         | 54.5847      |
| 5      | 14/01/11 00:05      | 14/01/11 23:55      | Qa 38.3300           | 23:48:34           | 36.058                  | 38.186                  | 1.22             | 57.7781      | 51.5121         | 54.5489      |
| 6      | 14/01/12 00:05      | 14/01/12 23:55      | Qa 38.3300           | 23:48:39           | 35.977                  | 38.171                  | 1.18             | 57.912       | 51.3981         | 54.5338      |
| 7      | 14/01/13 00:05      | 14/01/13 23:55      | Qa 38.3300           | 23:48:36           | 36.091                  | 38.182                  | 1.19             | 57.9128      | 51.5595         | 54.5457      |
| 8      | 14/01/14 00:05      | 14/01/14 23:55      | Qa 38.3300           | 23:48:34           | 35.993                  | 38.184                  | 1.2              | 57.9285      | 51.4193         | 54.5484      |
| 9      | 14/01/15 00:05      | 14/01/15 23:55      | Qa 38.3300           | 23:48:35           | 36.07                   | 38.182                  | 1.28             | 57.9806      | 51.5281         | 54.5458      |
| 10     | 14/01/16 00:05      | 14/01/16 23:55      | Qa 38.3300           | 23:48:35           | 36.297                  | 38.182                  | 1.28             | 58.0456      | 51.8554         | 54.5463      |
| 11     | 14/01/17 00:05      | 14/01/17 23:55      | Qa 38.3300           | 23:48:39           | 36.151                  | 38.175                  | 1.3              | 57.5985      | 51.647          | 54.5385      |
| 12     | 14/01/18 00:05      | 14/01/18 23:55      | Qa 38.3300           | 23:48:40           | 35.697                  | 38.172                  | 1.32             | 57.2704      | 50.9995         | 54.5346      |
| 13     | 14/01/19 00:05      | 14/01/19 23:55      | Qa 38.3300           | 23:24:34           | 35.455                  | 38.178                  | 1.21             | 56.4546      | 49.7977         | 53.6231      |
| 14     | 14/01/20 00:05      | 14/01/20 23:55      | Qa 38.3300           | 23:48:30           | 35.66                   | 38.178                  | 1.18             | 57.412       | 50.9415         | 54.5372      |
| 15     | 14/01/21 00:05      | 14/01/21 23:55      | Qa 38.3300           | 23:48:37           | 36.135                  | 38.199                  | 1.34             | 57.6244      | 51.6221         | 54.572       |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        | 15.48                            | 102.21                         |
| 2        | 15.26                            | 102.6                          |
| 3        | 14.61                            | 102.51                         |
| 4        | 16.26                            | 102.21                         |
| 5        | 17.4                             | 102.23                         |
| 6        | 17.42                            | 101.88                         |
| 7        | 15.69                            | 101.5                          |
| 8        | 15.72                            | 101.39                         |
| 9        | 14.44                            | 101.09                         |
| 10       | 14.13                            | 101.81                         |
| 11       | 15.76                            | 101.97                         |
| 12       | 17.88                            | 101.31                         |
| 13       | 18.5                             | 100.68                         |
| 14       | 17.1                             | 100.85                         |
| 15       | 14.51                            | 101.27                         |



Birżebbuġa – PM<sub>10</sub> Sampler Report 11

| Sample | Effective start     | Effective stop      | Programmed           | Elapsed            | Average                 | Average                 | Deviation        | Gas meter    | Standard        | Actual       |
|--------|---------------------|---------------------|----------------------|--------------------|-------------------------|-------------------------|------------------|--------------|-----------------|--------------|
| #      | (yy/mm/dd hh.mm wd) | (yy/mm/dd hh.mm wd) | flow rate<br>(I/min) | time<br>(hh.mm.ss) | flow rate<br>Qs (I/min) | flow rate Qa<br>(I/min) | flow rate<br>(%) | volume (m^3) | volume<br>(m^3) | volume (m^3) |
| 1      | 14/01/07 00:05      | 14/01/07 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 2      | 14/01/08 00:05      | 14/01/08 23:55      | Qa 38.3300           | 23:48:38           | 36.78                   | 38.246                  | 0.46             | 57.1288      | 52.5454         | 54.6372      |
| 3      | 14/01/09 00:05      | 14/01/09 23:55      | Qa 38.3300           | 23:06:59           | 36.838                  | 38.242                  | 0.44             | 53.0906      | 48.8835         | 50.7464      |
| 4      | 14/01/10 00:05      | 14/01/10 23:55      | Qa 38.3300           | 23:48:32           | 36.39                   | 38.245                  | 0.48             | 57.2625      | 51.9847         | 54.6349      |
| 5      | 14/01/11 00:05      | 14/01/11 23:55      | Qa 38.3300           | 23:48:37           | 36.212                  | 38.243                  | 0.47             | 57.0182      | 51.7324         | 54.6343      |
| 6      | 14/01/12 00:05      | 14/01/12 23:55      | Qa 38.3300           | 23:48:33           | 36.182                  | 38.247                  | 0.5              | 57.0505      | 51.6874         | 54.6373      |
| 7      | 14/01/13 00:05      | 14/01/13 23:55      | Qa 38.3300           | 23:48:37           | 36.286                  | 38.242                  | 0.49             | 57.0157      | 51.8391         | 54.6319      |
| 8      | 14/01/14 00:05      | 14/01/14 23:55      | Qa 38.3300           | 23:48:36           | 36.239                  | 38.247                  | 0.47             | 57.2871      | 51.7713         | 54.6392      |
| 9      | 14/01/15 00:05      | 14/01/15 23:55      | Qa 38.3300           | 23:48:34           | 36.28                   | 38.245                  | 0.48             | 57.144       | 51.8286         | 54.6354      |
| 10     | 14/01/16 00:05      | 14/01/16 23:55      | Qa 38.3300           | 23:48:34           | 36.54                   | 38.248                  | 0.46             | 57.122       | 52.1992         | 54.6374      |
| 11     | 14/01/17 00:05      | 14/01/17 23:55      | Qa 38.3300           | 23:48:37           | 36.308                  | 38.244                  | 0.46             | 56.8404      | 51.8693         | 54.6354      |
| 12     | 14/01/18 00:05      | 14/01/18 23:55      | Qa 38.3300           | 23:48:32           | 35.852                  | 38.243                  | 0.46             | 56.5279      | 51.2147         | 54.6311      |
| 13     | 14/01/19 00:05      | 14/01/19 23:55      | Qa 38.3300           | 23:48:31           | 35.588                  | 38.246                  | 0.48             | 56.9393      | 50.8377         | 54.6351      |
| 14     | 14/01/20 00:05      | 14/01/20 23:55      | Qa 38.3300           | 23:48:41           | 35.793                  | 38.245                  | 0.45             | 57.0251      | 51.1371         | 54.6405      |
| 15     | 14/01/21 00:05      | 14/01/21 23:55      | Qa 38.3300           | 23:48:39           | 36.298                  | 38.245                  | 0.48             | 57.0988      | 51.8575         | 54.639       |



te

| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |  |  |  |  |
|----------|----------------------------------|--------------------------------|--|--|--|--|
| 1        | 13.24                            | 102.41                         |  |  |  |  |
| 2        | 12.38                            | 102.25                         |  |  |  |  |
| 3        | 15.24                            | 102.05                         |  |  |  |  |
| 4        | 16.53                            | 101.99                         |  |  |  |  |
| 5        | 16.2                             | 101.83                         |  |  |  |  |
| 6        | 14.7                             | 101.5                          |  |  |  |  |
| 7        | 14.29                            | 101.37                         |  |  |  |  |
| 8        | 13.47                            | 101.19                         |  |  |  |  |
| 9        | 12.94                            | 101.78                         |  |  |  |  |
| 10       | 15.26                            | 101.81                         |  |  |  |  |
| 11       | 17.17                            | 101.47                         |  |  |  |  |
| 12       | 17.78                            | 100.73                         |  |  |  |  |
| 13       | 16.48                            | 100.91                         |  |  |  |  |
| 14       | 13.84                            | 101.45                         |  |  |  |  |
| 15       | 13.24                            | 102.41                         |  |  |  |  |



| Sample | Effective start     | Effective stop      | Programmed           | Elapsed            | Average                 | Average                 | Deviation        | Gas meter    | Standard        | Actual       |
|--------|---------------------|---------------------|----------------------|--------------------|-------------------------|-------------------------|------------------|--------------|-----------------|--------------|
| #      | (yy/mm/dd hh.mm wd) | (yy/mm/dd hh.mm wd) | flow rate<br>(I/min) | time<br>(hh.mm.ss) | flow rate<br>Qs (l/min) | flow rate Qa<br>(I/min) | flow rate<br>(%) | volume (m^3) | volume<br>(m^3) | volume (m^3) |
| 1      | 14/01/07 00:05      | 14/01/07 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 2      | 14/01/08 00:05      | 14/01/08 23:55      | Qa 38.3300           | 23:48:31           | 36.563                  | 38.233                  | 0.71             | 56.7176      | 52.2308         | 54.6164      |
| 3      | 14/01/09 00:05      | 14/01/09 23:55      | Qa 38.3300           | 23:46:54           | 36.602                  | 38.239                  | 0.69             | 52.7612      | 48.567          | 50.7394      |
| 4      | 14/01/10 00:05      | 14/01/10 23:55      | Qa 38.3300           | 23:48:41           | 36.233                  | 38.235                  | 0.68             | 56.6983      | 51.7654         | 54.6256      |
| 5      | 14/01/11 00:05      | 14/01/11 23:55      | Qa 38.3300           | 23:48:36           | 36.018                  | 38.241                  | 0.65             | 56.6965      | 51.4545         | 54.6314      |
| 6      | 14/01/12 00:05      | 14/01/12 23:55      | Qa 38.3300           | 23:48:39           | 35.962                  | 38.235                  | 0.69             | 56.8167      | 51.3771         | 54.6245      |
| 7      | 14/01/13 00:05      | 14/01/13 23:55      | Qa 38.3300           | 23:48:36           | 36.111                  | 38.231                  | 0.72             | 56.8436      | 51.589          | 54.6176      |
| 8      | 14/01/14 00:05      | 14/01/14 23:55      | Qa 38.3300           | 23:48:35           | 36.064                  | 38.235                  | 0.68             | 56.926       | 51.5192         | 54.6214      |
| 9      | 14/01/15 00:05      | 14/01/15 23:55      | Qa 38.3300           | 23:48:37           | 36.1                    | 38.229                  | 0.71             | 56.8801      | 51.5741         | 54.617       |
| 10     | 14/01/16 00:05      | 14/01/16 23:55      | Qa 38.3300           | 23:48:42           | 36.331                  | 38.232                  | 0.7              | 56.9009      | 51.9053         | 54.6209      |
| 11     | 14/01/17 00:05      | 14/01/17 23:55      | Qa 38.3300           | 23:48:37           | 36.128                  | 38.232                  | 0.72             | 56.5518      | 51.6126         | 54.6193      |
| 12     | 14/01/18 00:05      | 14/01/18 23:55      | Qa 38.3300           | 23:48:33           | 35.68                   | 38.223                  | 0.74             | 56.4444      | 50.97           | 54.6023      |
| 13     | 14/01/19 00:05      | 14/01/19 23:55      | Qa 38.3300           | 23:48:29           | 35.475                  | 38.24                   | 0.64             | 56.7309      | 50.6747         | 54.6239      |
| 14     | 14/01/20 00:05      | 14/01/20 23:55      | Qa 38.3300           | 23:48:35           | 35.676                  | 38.23                   | 0.71             | 56.5227      | 50.9661         | 54.6157      |
| 15     | 14/01/21 00:05      | 14/01/21 23:55      | Qa 38.3300           | 23:48:37           | 36.147                  | 38.237                  | 0.66             | 56.5296      | 51.6421         | 54.6288      |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        | 14.32                            | 102.33                         |
| 2        | 13.61                            | 102.15                         |
| 3        | 16.1                             | 101.92                         |
| 4        | 17.85                            | 101.95                         |
| 5        | 17.65                            | 101.7                          |
| 6        | 15.62                            | 101.36                         |
| 7        | 15.26                            | 101.17                         |
| 8        | 14.33                            | 100.91                         |
| 9        | 14.02                            | 101.57                         |
| 10       | 16.21                            | 101.73                         |
| 11       | 18.15                            | 101.26                         |
| 12       | 18.54                            | 100.58                         |
| 13       | 17.06                            | 100.71                         |
| 14       | 14.47                            | 101.18                         |
| 15       | 14.32                            | 102.33                         |



| Sample<br># | Effective start<br>(yy/mm/dd hh.mm wd) | Effective stop<br>(yy/mm/dd hh.mm wd) | Programmed flow rate (I/min) | Elapsed<br>time<br>(hh.mm.ss) | Average<br>flow rate<br>Qs (I/min) | Average<br>flow rate Qa<br>(I/min) | Deviation<br>flow rate<br>(%) | Gas meter<br>volume<br>(m^3) | Standard<br>volume<br>(m^3) | Actual<br>volume<br>(m^3) |
|-------------|----------------------------------------|---------------------------------------|------------------------------|-------------------------------|------------------------------------|------------------------------------|-------------------------------|------------------------------|-----------------------------|---------------------------|
| 1           | 14/01/22 00:05                         | 14/01/22 23:55                        | Qa 38.3300                   | 23:46:23                      | 36.329                             | 38.236                             | 0.73                          | 57.2516                      | 51.819                      | 54.5394                   |
| 2           | 14/01/23 00:05                         | 14/01/23 23:55                        | Qa 38.3300                   | 23:48:36                      | 36.123                             | 38.225                             | 0.73                          | 57.3462                      | 51.6056                     | 54.6085                   |
| 3           | 14/01/24 00:05                         | 14/01/24 23:55                        | Qa 38.3300                   | 23:48:32                      | 36.096                             | 38.23                              | 0.86                          | 57.3537                      | 51.563                      | 54.6116                   |
| 4           | 14/01/25 00:05                         | 14/01/25 23:55                        | Qa 38.3300                   | 23:48:38                      | 36.137                             | 38.237                             | 0.85                          | 57.1303                      | 51.6271                     | 54.6262                   |
| 5           | 14/01/26 00:05                         | 14/01/26 23:55                        | Qa 38.3300                   | 23:48:36                      | 36.092                             | 38.229                             | 0.8                           | 57.3577                      | 51.5608                     | 54.6142                   |
| 6           | 14/01/27 00:05                         | 14/01/27 23:55                        | Qa 38.3300                   | 23:48:31                      | 36.005                             | 38.231                             | 0.78                          | 57.3855                      | 51.4332                     | 54.613                    |
| 7           | 14/01/28 00:05                         | 14/01/28 23:55                        | Qa 38.3300                   | 23:38:34                      | 35.992                             | 38.223                             | 0.84                          | 56.8643                      | 51.0571                     | 54.2214                   |
| 8           | 14/01/29 00:05                         | 14/01/29 23:55                        | Qa 38.3300                   | 23:48:37                      | 36.086                             | 38.223                             | 0.8                           | 57.319                       | 51.5527                     | 54.6057                   |
| 9           | 14/01/30 00:05                         | 14/01/30 23:55                        | Qa 38.3300                   | 23:48:33                      | 35.936                             | 38.226                             | 0.86                          | 57.0038                      | 51.3365                     | 54.6079                   |
| 10          | 14/01/31 00:05                         | 14/01/31 23:55                        | Qa 38.3300                   | 23:48:41                      | 35.657                             | 38.23                              | 0.84                          | 57.2002                      | 50.9417                     | 54.618                    |
| 11          | 14/02/01 00:05                         | 14/02/01 23:55                        | Qa 38.3300                   | 23:48:38                      | 35.98                              | 38.225                             | 0.91                          | 57.2661                      | 51.4017                     | 54.6086                   |
| 12          | 14/02/02 00:05                         | 14/02/02 23:55                        | Qa 38.3300                   | 23:48:36                      | 35.859                             | 38.221                             | 0.8                           | 57.4158                      | 51.2279                     | 54.5999                   |
| 13          | 14/02/03 00:05                         | 14/02/03 23:55                        | Qa 38.3300                   | 23:48:40                      | 36.369                             | 38.223                             | 0.86                          | 57.3827                      | 51.9644                     | 54.6076                   |
| 14          | 14/02/04 00:05                         | 14/02/04 23:55                        | Qa 38.3300                   | 23:48:32                      | 36.431                             | 38.224                             | 0.8                           | 57.4049                      | 52.0428                     | 54.6032                   |
| 15          | 14/02/05 00:05                         | 14/02/05 23:55                        | Qa 38.3300                   | 23:48:39                      | 36.463                             | 38.228                             | 0.81                          | 57.4242                      | 52.0876                     | 54.6086                   |

 $Marsaxlokk - PM_{10} Sampler Report 12$ 





| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        | 15.26                            | 101.87                         |
| 2        | 16.62                            | 101.79                         |
| 3        | 15.42                            | 101.47                         |
| 4        | 13                               | 100.74                         |
| 5        | 13.99                            | 100.95                         |
| 6        | 14.41                            | 100.84                         |
| 7        | 13.02                            | 100.45                         |
| 8        | 14.79                            | 101.11                         |
| 9        | 16.1                             | 101.14                         |
| 10       | 17.24                            | 100.9                          |
| 11       | 14.42                            | 100.97                         |
| 12       | 14.66                            | 100.9                          |
| 13       | 13.51                            | 101.53                         |
| 14       | 14.44                            | 101.97                         |
| 15       | 14.08                            | 101.76                         |



# Marsaxlokk – PM<sub>2.5</sub> Sampler Report 12

| Sample | Effective start     | Effective stop      | Programmed           | Elapsed            | Average                 | Average                 | Deviation        | Gas meter    | Standard        | Actual       |
|--------|---------------------|---------------------|----------------------|--------------------|-------------------------|-------------------------|------------------|--------------|-----------------|--------------|
| #      | (yy/mm/dd hh.mm wd) | (yy/mm/dd hh.mm wd) | flow rate<br>(I/min) | time<br>(hh.mm.ss) | flow rate<br>Qs (I/min) | flow rate Qa<br>(I/min) | flow rate<br>(%) | volume (m^3) | volume<br>(m^3) | volume (m^3) |
| 1      | 14/01/22 00:05      | 14/01/22 23:55      | Qa 38.3300           | 23:42:02           | 36.134                  | 38.205                  | 1.36             | 57.4674      | 51.3843         | 54.3279      |
| 2      | 14/01/23 00:05      | 14/01/23 23:55      | Qa 38.3300           | 23:48:36           | 35.911                  | 38.176                  | 1.25             | 57.4795      | 51.3025         | 54.538       |
| 3      | 14/01/24 00:05      | 14/01/24 23:55      | Qa 38.3300           | 23:48:29           | 35.894                  | 38.188                  | 1.26             | 57.5548      | 51.2735         | 54.5503      |
| 4      | 14/01/25 00:05      | 14/01/25 23:55      | Qa 38.3300           | 23:48:29           | 35.902                  | 38.189                  | 1.39             | 57.3693      | 51.2845         | 54.5517      |
| 5      | 14/01/26 00:05      | 14/01/26 23:55      | Qa 38.3300           | 23:48:33           | 35.864                  | 38.182                  | 1.27             | 57.5969      | 51.2327         | 54.5442      |
| 6      | 14/01/27 00:05      | 14/01/27 23:55      | Qa 38.3300           | 23:48:35           | 35.78                   | 38.182                  | 1.27             | 57.5996      | 51.115          | 54.5458      |
| 7      | 14/01/28 00:05      | 14/01/28 23:55      | Qa 38.3300           | 23:38:33           | 35.778                  | 38.186                  | 1.32             | 57.2728      | 50.7527         | 54.1669      |
| 8      | 14/01/29 00:05      | 14/01/29 23:55      | Qa 38.3300           | 23:48:37           | 35.874                  | 38.174                  | 1.25             | 57.6389      | 51.2548         | 54.5363      |
| 9      | 14/01/30 00:05      | 14/01/30 23:55      | Qa 38.3300           | 23:48:29           | 35.722                  | 38.169                  | 1.17             | 57.151       | 51.0287         | 54.524       |
| 10     | 14/01/31 00:05      | 14/01/31 23:55      | Qa 38.3300           | 23:48:33           | 35.463                  | 38.171                  | 1.14             | 57.481       | 50.6659         | 54.5268      |
| 11     | 14/02/01 00:05      | 14/02/01 23:55      | Qa 38.3300           | 23:48:32           | 35.786                  | 38.188                  | 1.35             | 57.7109      | 51.1207         | 54.5519      |
| 12     | 14/02/02 00:05      | 14/02/02 23:55      | Qa 38.3300           | 23:48:40           | 35.668                  | 38.188                  | 1.24             | 57.9353      | 50.9579         | 54.5583      |
| 13     | 14/02/03 00:05      | 14/02/03 23:55      | Qa 38.3300           | 23:48:36           | 36.162                  | 38.193                  | 1.36             | 57.8078      | 51.6619         | 54.5628      |
| 14     | 14/02/04 00:05      | 14/02/04 23:55      | Qa 38.3300           | 23:48:37           | 36.24                   | 38.189                  | 1.29             | 57.9419      | 51.7729         | 54.5569      |
| 15     | 14/02/05 00:05      | 14/02/05 23:55      | Qa 38.3300           | 23:48:38           | 36.254                  | 38.186                  | 1.41             | 57.9605      | 51.7928         | 54.5532      |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        | 15.66                            | 101.79                         |
| 2        | 17.01                            | 101.69                         |
| 3        | 15.72                            | 101.13                         |
| 4        | 13.2                             | 100.25                         |
| 5        | 14.34                            | 100.71                         |
| 6        | 14.78                            | 100.7                          |
| 7        | 13.21                            | 99.99                          |
| 8        | 15.12                            | 101.04                         |
| 9        | 16.39                            | 100.77                         |
| 10       | 17.55                            | 100.62                         |
| 11       | 14.55                            | 100.63                         |
| 12       | 15.07                            | 100.48                         |
| 13       | 13.87                            | 101.24                         |
| 14       | 14.7                             | 101.88                         |
| 15       | 14.4                             | 101.66                         |



Birżebbuġa – PM<sub>10</sub> Sampler Report 12

| Sample | Effective start     | Effective stop      | Programmed           | Elapsed            | Average                 | Average                 | Deviation        | Gas meter    | Standard        | Actual       |
|--------|---------------------|---------------------|----------------------|--------------------|-------------------------|-------------------------|------------------|--------------|-----------------|--------------|
| #      | (yy/mm/dd hh.mm wd) | (yy/mm/dd hh.mm wd) | flow rate<br>(I/min) | time<br>(hh.mm.ss) | flow rate<br>Qs (l/min) | flow rate Qa<br>(I/min) | flow rate<br>(%) | volume (m^3) | volume<br>(m^3) | volume (m^3) |
| 1      | 14/01/22 00:05      | 14/01/22 23:55      | Qa 38.3300           | 23:46:32           | 36.318                  | 38.251                  | 0.5              | 57.2264      | 51.808          | 54.5665      |
| 2      | 14/01/23 00:05      | 14/01/23 23:55      | Qa 38.3300           | 23:48:39           | 36.082                  | 38.234                  | 0.51             | 56.8172      | 51.5507         | 54.6251      |
| 3      | 14/01/24 00:05      | 14/01/24 23:55      | Qa 38.3300           | 23:48:33           | 36.067                  | 38.249                  | 0.47             | 57.0767      | 51.5237         | 54.6381      |
| 4      | 14/01/25 00:05      | 14/01/25 23:55      | Qa 38.3300           | 23:48:31           | 36.124                  | 38.244                  | 0.5              | 56.9938      | 51.6042         | 54.632       |
| 5      | 14/01/26 00:05      | 14/01/26 23:55      | Qa 38.3300           | 23:48:27           | 36.094                  | 38.25                   | 0.46             | 57.1134      | 51.558          | 54.6383      |
| 6      | 14/01/27 00:05      | 14/01/27 23:55      | Qa 38.3300           | 23:48:33           | 35.988                  | 38.25                   | 0.46             | 57.2114      | 51.4096         | 54.6418      |
| 7      | 14/01/28 00:05      | 14/01/28 23:55      | Qa 38.3300           | 23:48:35           | 35.996                  | 38.249                  | 0.45             | 57.1677      | 51.4237         | 54.6426      |
| 8      | 14/01/29 00:05      | 14/01/29 23:55      | Qa 38.3300           | 23:48:35           | 36.049                  | 38.242                  | 0.5              | 57.2666      | 51.5036         | 54.6314      |
| 9      | 14/01/30 00:05      | 14/01/30 23:55      | Qa 38.3300           | 23:48:35           | 35.892                  | 38.233                  | 0.47             | 56.4657      | 51.2746         | 54.6187      |
| 10     | 14/01/31 00:05      | 14/01/31 23:55      | Qa 38.3300           | 23:48:37           | 35.647                  | 38.253                  | 0.46             | 56.7973      | 50.9257         | 54.6493      |
| 11     | 14/02/01 00:05      | 14/02/01 23:55      | Qa 38.3300           | 23:48:34           | 35.95                   | 38.243                  | 0.47             | 56.8821      | 51.3564         | 54.6322      |
| 12     | 14/02/02 00:05      | 14/02/02 23:55      | Qa 38.3300           | 23:37:55           | 35.804                  | 38.24                   | 0.47             | 56.5168      | 50.7669         | 54.222       |
| 13     | 14/02/03 00:05      | 14/02/03 23:55      | Qa 38.3300           | 23:48:36           | 36.365                  | 38.25                   | 0.49             | 57.2831      | 51.9509         | 54.6443      |
| 14     | 14/02/04 00:05      | 14/02/04 23:55      | Qa 38.3300           | 23:48:37           | 36.426                  | 38.246                  | 0.47             | 57.4358      | 52.0388         | 54.6389      |
| 15     | 14/02/05 00:05      | 14/02/05 23:55      | Qa 38.3300           | 23:48:29           | 36.425                  | 38.252                  | 0.47             | 57.3214      | 52.0319         | 54.6421      |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        | 14.67                            | 101.54                         |
| 2        | 16.16                            | 101.52                         |
| 3        | 14.98                            | 101.26                         |
| 4        | 12.53                            | 100.56                         |
| 5        | 13.39                            | 100.63                         |
| 6        | 13.92                            | 100.54                         |
| 7        | 12.5                             | 100.26                         |
| 8        | 14.4                             | 100.88                         |
| 9        | 15.76                            | 100.91                         |
| 10       | 16.63                            | 100.67                         |
| 11       | 14.11                            | 100.77                         |
| 12       | 14.4                             | 100.74                         |
| 13       | 13.04                            | 101.39                         |
| 14       | 13.83                            | 101.55                         |
| 15       | 13.8                             | 101.52                         |



# Birżebbuġa – PM<sub>2.5</sub> Sampler Report 12

| Sample | Effective start     | Effective stop      | Programmed | Elapsed    | Average    | Average      | Deviation | Gas meter | Standard | Actual  |
|--------|---------------------|---------------------|------------|------------|------------|--------------|-----------|-----------|----------|---------|
| #      | (yy/mm/dd hh.mm wd) | (yy/mm/dd hh.mm wd) | flow rate  | time       | flow rate  | flow rate Qa | flow rate | volume    | volume   | volume  |
|        |                     |                     | (I/min)    | (hh.mm.ss) | Qs (l/min) | (I/min)      | (%)       | (m^3)     | (m^3)    | (m^3)   |
| 1      | 14/01/22 00:05      | 14/01/22 23:55      | Qa 38.3300 | 23:38:33   | 36.166     | 38.236       | 0.66      | 56.2659   | 51.3041  | 54.2403 |
| 2      | 14/01/23 00:05      | 14/01/23 23:55      | Qa 38.3300 | 23:48:37   | 35.905     | 38.234       | 0.66      | 56.8211   | 51.2942  | 54.6217 |
| 3      | 14/01/24 00:05      | 14/01/24 23:55      | Qa 38.3300 | 23:48:30   | 35.925     | 38.236       | 0.68      | 56.8486   | 51.3152  | 54.6201 |
| 4      | 14/01/25 00:05      | 14/01/25 23:55      | Qa 38.3300 | 23:48:33   | 35.986     | 38.234       | 0.66      | 56.5256   | 51.4062  | 54.6173 |
| 5      | 14/01/26 00:05      | 14/01/26 23:55      | Qa 38.3300 | 23:48:36   | 35.954     | 38.233       | 0.68      | 56.7177   | 51.3648  | 54.62   |
| 6      | 14/01/27 00:05      | 14/01/27 23:55      | Qa 38.3300 | 23:48:38   | 35.851     | 38.241       | 0.68      | 56.9668   | 51.2174  | 54.6321 |
| 7      | 14/01/28 00:05      | 14/01/28 23:55      | Qa 38.3300 | 23:48:34   | 35.847     | 38.24        | 0.69      | 56.9752   | 51.2098  | 54.6284 |
| 8      | 14/01/29 00:05      | 14/01/29 23:55      | Qa 38.3300 | 23:48:32   | 35.901     | 38.234       | 0.69      | 56.9098   | 51.2851  | 54.6188 |
| 9      | 14/01/30 00:05      | 14/01/30 23:55      | Qa 38.3300 | 23:48:33   | 35.724     | 38.226       | 0.69      | 56.7719   | 51.0328  | 54.6069 |
| 10     | 14/01/31 00:05      | 14/01/31 23:55      | Qa 38.3300 | 23:48:39   | 35.473     | 38.23        | 0.67      | 56.8935   | 50.6783  | 54.6171 |
| 11     | 14/02/01 00:05      | 14/02/01 23:55      | Qa 38.3300 | 23:48:38   | 35.809     | 38.239       | 0.69      | 56.975    | 51.1572  | 54.6288 |
| 12     | 14/02/02 00:05      | 14/02/02 23:55      | Qa 38.3300 | 23:37:50   | 35.65      | 38.245       | 0.69      | 56.614    | 50.5444  | 54.2245 |
| 13     | 14/02/03 00:05      | 14/02/03 23:55      | Qa 38.3300 | 23:48:35   | 36.203     | 38.225       | 0.77      | 57.0042   | 51.7192  | 54.6072 |
| 14     | 14/02/04 00:05      | 14/02/04 23:55      | Qa 38.3300 | 23:48:29   | 36.269     | 38.237       | 0.71      | 57.4994   | 51.8102  | 54.6204 |
| 15     | 14/02/05 00:05      | 14/02/05 23:55      | Qa 38.3300 | 23:48:36   | 36.276     | 38.236       | 0.7       | 57.573    | 51.8258  | 54.6263 |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        | 15.36                            | 101.52                         |
| 2        | 17.33                            | 101.43                         |
| 3        | 15.74                            | 101.06                         |
| 4        | 12.98                            | 100.29                         |
| 5        | 13.97                            | 100.61                         |
| 6        | 14.63                            | 100.51                         |
| 7        | 13.13                            | 100.02                         |
| 8        | 15.3                             | 100.86                         |
| 9        | 16.72                            | 100.74                         |
| 10       | 17.67                            | 100.53                         |
| 11       | 14.75                            | 100.57                         |
| 12       | 15.39                            | 100.48                         |
| 13       | 13.7                             | 101.13                         |
| 14       | 14.8                             | 101.67                         |
| 15       | 14.63                            | 101.54                         |



# Marsaxlokk – PM<sub>10</sub> Sampler Report 13

| Sample<br># | Effective start<br>(yy/mm/dd hh.mm wd) | Effective stop<br>(yy/mm/dd hh.mm wd) | Programmed<br>flow rate (I/min) | Elapsed<br>time<br>(hh.mm.ss) | Average<br>flow rate<br>Qs (I/min) | Average<br>flow rate Qa<br>(I/min) | Deviation<br>flow rate<br>(%) | Gas meter<br>volume<br>(m^3) | Standard<br>volume<br>(m^3) | Actual<br>volume<br>(m^3) |
|-------------|----------------------------------------|---------------------------------------|---------------------------------|-------------------------------|------------------------------------|------------------------------------|-------------------------------|------------------------------|-----------------------------|---------------------------|
| 1           | 14/02/07 00:05                         | 14/02/07 23:55                        | Qa 38.3300                      | 23:48:40                      | 36.396                             | 38.237                             | 0.8                           | 57.6422                      | 51.9978                     | 54.628                    |
| 2           | 14/02/08 00:05                         | 14/02/08 23:55                        | Qa 38.3300                      | 23:48:36                      | 36.321                             | 38.22                              | 0.82                          | 57.7608                      | 51.8876                     | 54.6006                   |
| 3           | 14/02/09 00:05                         | 14/02/09 23:55                        | Qa 38.3300                      | 23:48:29                      | 36.255                             | 38.22                              | 0.82                          | 57.6596                      | 51.7895                     | 54.5964                   |
| 4           | 14/02/10 00:05                         | 14/02/10 23:55                        | Qa 38.3300                      | 23:48:31                      | 36.048                             | 38.219                             | 0.8                           | 57.5822                      | 51.4951                     | 54.5962                   |
| 5           | 14/02/11 00:05                         | 14/02/11 23:55                        | Qa 38.3300                      | 23:48:36                      | 35.902                             | 38.224                             | 0.77                          | 57.4506                      | 51.2904                     | 54.609                    |
| 6           | 14/02/12 00:05                         | 14/02/12 23:55                        | Qa 38.3300                      | 23:48:33                      | 36.347                             | 38.228                             | 0.77                          | 57.5656                      | 51.9236                     | 54.6079                   |
| 7           | 14/02/13 00:05                         | 14/02/13 23:55                        | Qa 38.3300                      | 23:48:34                      | 36.409                             | 38.223                             | 0.79                          | 57.6688                      | 52.0124                     | 54.6049                   |
| 8           | 14/02/14 00:05                         | 14/02/14 23:55                        | Qa 38.3300                      | 23:48:35                      | 36.158                             | 38.227                             | 0.7                           | 57.5838                      | 51.6543                     | 54.6094                   |
| 9           | 14/02/15 00:05                         | 14/02/15 23:55                        | Qa 38.3300                      | 23:48:35                      | 36.194                             | 38.218                             | 0.73                          | 57.7582                      | 51.7052                     | 54.5973                   |
| 10          | 14/02/16 00:05                         | 14/02/16 23:55                        | Qa 38.3300                      | 23:48:34                      | 36.158                             | 38.226                             | 0.7                           | 57.6968                      | 51.6565                     | 54.6097                   |
| 11          | 14/02/17 00:05                         | 14/02/17 23:55                        | Qa 38.3300                      | 23:48:34                      | 36.122                             | 38.216                             | 0.79                          | 57.6947                      | 51.6047                     | 54.5959                   |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        | 15.16                            | 101.83                         |
| 2        | 15.06                            | 101.63                         |
| 3        | 15.3                             | 101.53                         |
| 4        | 16.09                            | 101.23                         |
| 5        | 15.39                            | 100.56                         |
| 6        | 13.85                            | 101.26                         |
| 7        | 14.08                            | 101.52                         |
| 8        | 16.18                            | 101.55                         |
| 9        | 16.6                             | 101.82                         |
| 10       | 17.48                            | 102.01                         |
| 11       | 17.67                            | 102                            |



# Marsaxlokk – PM<sub>2.5</sub> Sampler Report 13

| Sample |                     | -                   | Programmed           | Elapsed            | Average                 | Average                 | Deviation        | Gas meter    | Standard        | Actual       |
|--------|---------------------|---------------------|----------------------|--------------------|-------------------------|-------------------------|------------------|--------------|-----------------|--------------|
| #      | (yy/mm/dd hh.mm wd) | (yy/mm/dd hh.mm wd) | flow rate<br>(l/min) | time<br>(hh.mm.ss) | flow rate<br>Qs (l/min) | flow rate Qa<br>(I/min) | flow rate<br>(%) | volume (m^3) | volume<br>(m^3) | volume (m^3) |
| 1      | 14/02/07 00:05      | 14/02/07 23:55      | Qa 38.3300           | 23:48:35           | 36.177                  | 38.191                  | 1.52             | 57.856       | 51.6814         | 54.5587      |
| 2      | 14/02/08 00:05      | 14/02/08 23:55      | Qa 38.3300           | 23:48:28           | 36.136                  | 38.199                  | 1.42             | 58.0547      | 51.6185         | 54.5665      |
| 3      | 14/02/09 00:05      | 14/02/09 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 4      | 14/02/10 00:05      | 14/02/10 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 5      | 14/02/11 00:05      | 14/02/11 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 6      | 14/02/12 00:05      | 14/02/12 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 7      | 14/02/13 00:05      | 14/02/13 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 8      | 14/02/14 00:05      | 14/02/14 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 9      | 14/02/15 00:05      | 14/02/15 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 10     | 14/02/16 00:05      | 14/02/16 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |
| 11     | 14/02/17 00:05      | 14/02/17 23:55      | Qa 38.3300           |                    |                         |                         |                  |              |                 |              |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        | 15.59                            | 101.49                         |
| 2        | 15.47                            | 101.31                         |
| 3        |                                  |                                |
| 4        |                                  |                                |
| 5        |                                  |                                |
| 6        |                                  |                                |
| 7        |                                  |                                |
| 8        |                                  |                                |
| 9        |                                  |                                |
| 10       |                                  |                                |
| 11       |                                  |                                |
| 12       |                                  |                                |
| 13       |                                  |                                |
| 14       |                                  |                                |
| 15       |                                  |                                |



Birżebbuġa – PM<sub>10</sub> Sampler Report 13

| Sample | Effective start     | Effective stop      | Programmed | Elapsed    | Average    | Average      | Deviation | Gas meter    | Standard | Actual       |
|--------|---------------------|---------------------|------------|------------|------------|--------------|-----------|--------------|----------|--------------|
| #      | (yy/mm/dd hh.mm wd) | (yy/mm/dd hh.mm wd) |            | time       | flow rate  | flow rate Qa | flow rate | volume (m^3) | volume   | volume (m^3) |
|        |                     |                     | (l/min)    | (hh.mm.ss) | Qs (l/min) | (I/min)      | (%)       |              | (m^3)    |              |
| 1      | 14/02/07 00:05      | 14/02/07 23:55      | Qa 38.3300 | 23:48:39   | 36.425     | 38.243       | 0.48      | 57.3614      | 52.0382  | 54.6358      |
| 2      | 14/02/08 00:05      | 14/02/08 23:55      | Qa 38.3300 | 23:48:28   | 36.317     | 38.253       | 0.5       | 57.6601      | 51.8776  | 54.6428      |
| 3      | 14/02/09 00:05      | 14/02/09 23:55      | Qa 38.3300 | 23:48:27   | 36.217     | 38.253       | 0.44      | 57.6218      | 51.734   | 54.6421      |
| 4      | 14/02/10 00:05      | 14/02/10 23:55      | Qa 38.3300 | 23:48:33   | 36.024     | 38.251       | 0.43      | 57.2001      | 51.4623  | 54.6433      |
| 5      | 14/02/11 00:05      | 14/02/11 23:55      | Qa 38.3300 | 23:48:33   | 35.877     | 38.252       | 0.47      | 57.3205      | 51.252   | 54.6419      |
| 6      | 14/02/12 00:05      | 14/02/12 23:55      | Qa 38.3300 | 23:48:33   | 36.325     | 38.251       | 0.47      | 57.4923      | 51.8933  | 54.6431      |
| 7      | 14/02/13 00:05      | 14/02/13 23:55      | Qa 38.3300 | 23:48:31   | 36.358     | 38.249       | 0.51      | 57.4796      | 51.9379  | 54.6391      |
| 8      | 14/02/14 00:05      | 14/02/14 23:55      | Qa 38.3300 | 23:48:33   | 36.094     | 38.254       | 0.49      | 57.4392      | 51.5615  | 54.6474      |
| 9      | 14/02/15 00:05      | 14/02/15 23:55      | Qa 38.3300 | 23:48:33   | 36.184     | 38.255       | 0.48      | 57.6076      | 51.6907  | 54.6491      |
| 10     | 14/02/16 00:05      | 14/02/16 23:55      | Qa 38.3300 | 23:48:35   | 36.122     | 38.251       | 0.45      | 57.4726      | 51.6035  | 54.6446      |
| 11     | 14/02/17 00:05      | 14/02/17 23:55      | Qa 38.3300 | 23:48:37   | 36.106     | 38.245       | 0.46      | 56.9639      | 51.5812  | 54.6366      |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        | 14.1                             | 101.52                         |
| 2        | 14.43                            | 101.31                         |
| 3        | 14.94                            | 101.21                         |
| 4        | 15.58                            | 100.9                          |
| 5        | 14.89                            | 100.25                         |
| 6        | 13.38                            | 100.97                         |
| 7        | 13.85                            | 101.23                         |
| 8        | 15.96                            | 101.22                         |
| 9        | 15.93                            | 101.46                         |
| 10       | 16.88                            | 101.63                         |
| 11       | 17.02                            | 101.65                         |



# Birżebbuġa – PM<sub>2.5</sub> Sampler Report 13

| Sample | Effective start     | Effective stop      | Programmed | Elapsed    | Average    | Average      | Deviation | Gas meter    | Standard | Actual       |
|--------|---------------------|---------------------|------------|------------|------------|--------------|-----------|--------------|----------|--------------|
| #      | (yy/mm/dd hh.mm wd) | (yy/mm/dd hh.mm wd) | flow rate  | time       | flow rate  | flow rate Qa | flow rate | volume (m^3) | volume   | volume (m^3) |
|        |                     |                     | (I/min)    | (hh.mm.ss) | Qs (l/min) | (l/min)      | (%)       |              | (m^3)    |              |
| 1      | 14/02/07 00:05      | 14/02/07 23:55      | Qa 38.3300 | 23:48:32   | 36.425     | 38.243       | 0.48      | 57.3614      | 52.0382  | 54.6358      |
| 2      | 14/02/08 00:05      | 14/02/08 23:55      | Qa 38.3300 | 23:48:33   | 36.317     | 38.253       | 0.5       | 57.6601      | 51.8776  | 54.6428      |
| 3      | 14/02/09 00:05      | 14/02/09 23:55      | Qa 38.3300 | 23:48:38   | 36.217     | 38.253       | 0.44      | 57.6218      | 51.734   | 54.6421      |
| 4      | 14/02/10 00:05      | 14/02/10 23:55      | Qa 38.3300 | 23:48:29   | 36.024     | 38.251       | 0.43      | 57.2001      | 51.4623  | 54.6433      |
| 5      | 14/02/11 00:05      | 14/02/11 23:55      | Qa 38.3300 | 23:48:34   | 35.877     | 38.252       | 0.47      | 57.3205      | 51.252   | 54.6419      |
| 6      | 14/02/12 00:05      | 14/02/12 23:55      | Qa 38.3300 | 23:48:36   | 36.325     | 38.251       | 0.47      | 57.4923      | 51.8933  | 54.6431      |
| 7      | 14/02/13 00:05      | 14/02/13 23:55      | Qa 38.3300 | 23:48:31   | 36.358     | 38.249       | 0.51      | 57.4796      | 51.9379  | 54.6391      |
| 8      | 14/02/14 00:05      | 14/02/14 23:55      | Qa 38.3300 | 23:48:28   | 36.094     | 38.254       | 0.49      | 57.4392      | 51.5615  | 54.6474      |
| 9      | 14/02/15 00:05      | 14/02/15 23:55      | Qa 38.3300 | 23:48:41   | 36.184     | 38.255       | 0.48      | 57.6076      | 51.6907  | 54.6491      |
| 10     | 14/02/16 00:05      | 14/02/16 23:55      | Qa 38.3300 | 23:48:28   | 36.122     | 38.251       | 0.45      | 57.4726      | 51.6035  | 54.6446      |
| 11     | 14/02/17 00:05      | 14/02/17 23:55      | Qa 38.3300 | 23:48:33   | 36.106     | 38.245       | 0.46      | 56.9639      | 51.5812  | 54.6366      |



| Sample<br># | Average ambient temperature (°C) | Average ambient pressure<br>(kPa) |
|-------------|----------------------------------|-----------------------------------|
| 1           | 15.64                            | 101.42                            |
| 2           | 15.28                            | 101.23                            |
| 3           | 15.82                            | 101.12                            |
| 4           | 16.85                            | 100.83                            |
| 5           | 15.69                            | 100.16                            |
| 6           | 14.1                             | 100.84                            |
| 7           | 14.47                            | 101.12                            |
| 8           | 16.47                            | 101.16                            |
| 9           | 17.66                            | 101.49                            |
| 10          | 18.16                            | 101.66                            |
| 11          | 18.65                            | 101.64                            |



| Marsaxlokk – PM <sub>10</sub> | Sampler | Report 14 |
|-------------------------------|---------|-----------|
|-------------------------------|---------|-----------|

| Sample<br># | Effective start<br>(yy/mm/dd hh.mm wd) | Effective stop<br>(yy/mm/dd hh.mm wd) | Programmed<br>flow rate (I/min) | Elapsed<br>time<br>(hh.mm.ss) | Average<br>flow rate<br>Qs (I/min) | Average<br>flow rate Qa<br>(I/min) | Deviation<br>flow rate<br>(%) | Gas meter<br>volume<br>(m^3) | Standard<br>volume<br>(m^3) | Actual<br>volume<br>(m^3) |
|-------------|----------------------------------------|---------------------------------------|---------------------------------|-------------------------------|------------------------------------|------------------------------------|-------------------------------|------------------------------|-----------------------------|---------------------------|
| 1           | 14/02/18 00:05                         | 14/02/18 23:55                        | Qa 38.3300                      |                               |                                    |                                    |                               |                              |                             |                           |
| 2           | 14/02/19 00:05                         | 14/02/19 23:55                        | Qa 38.3300                      |                               |                                    |                                    |                               |                              |                             |                           |
| 3           | 14/02/20 00:05                         | 14/02/20 23:55                        | Qa 38.3300                      | 23:53:32                      | 35.715                             | 38.23                              | 0.84                          | 57.908                       | 51.1994                     | 54.8022                   |
| 4           | 14/02/21 00:05                         | 14/02/21 23:55                        | Qa 38.3300                      | 23:53:36                      | 35.687                             | 38.223                             | 0.84                          | 58.043                       | 51.1613                     | 54.7968                   |
| 5           | 14/02/22 00:05                         | 14/02/22 23:55                        | Qa 38.3300                      | 23:53:38                      | 35.871                             | 38.225                             | 0.85                          | 58.0225                      | 51.4255                     | 54.8013                   |
| 6           | 14/02/23 00:05                         | 14/02/23 23:55                        | Qa 38.3300                      | 23:53:36                      | 36.116                             | 38.226                             | 0.8                           | 58.0663                      | 51.7763                     | 54.8009                   |
| 7           | 14/02/24 00:05                         | 14/02/24 23:55                        | Qa 38.3300                      | 23:53:27                      | 36.237                             | 38.229                             | 0.82                          | 58.133                       | 51.9432                     | 54.7975                   |
| 8           | 14/02/25 00:05                         | 14/02/25 23:55                        | Qa 38.3300                      | 23:53:34                      | 36.257                             | 38.224                             | 0.8                           | 58.2227                      | 51.9759                     | 54.7963                   |
| 9           | 14/02/26 00:05                         | 14/02/26 23:55                        | Qa 38.3300                      | 23:53:36                      | 36.222                             | 38.221                             | 0.77                          | 58.1599                      | 51.9285                     | 54.7931                   |
| 10          | 14/02/27 00:05                         | 14/02/27 23:55                        | Qa 38.3300                      | 23:53:33                      | 36.223                             | 38.221                             | 0.77                          | 58.1688                      | 51.9269                     | 54.7923                   |
| 11          | 14/02/28 00:05                         | 14/02/28 23:55                        | Qa 38.3300                      | 23:53:38                      | 36.497                             | 38.218                             | 0.77                          | 58.1488                      | 52.3223                     | 54.7905                   |
| 12          | 14/03/01 00:05                         | 14/03/01 23:55                        | Qa 38.3300                      | 23:53:39                      | 36.27                              | 38.21                              | 0.81                          | 58.2262                      | 51.9986                     | 54.7789                   |
| 13          | 14/03/02 00:05                         | 14/03/02 23:55                        | Qa 38.3300                      | 23:53:37                      | 36.052                             | 38.222                             | 0.76                          | 58.0376                      | 51.6852                     | 54.7958                   |
| 14          | 14/03/03 00:05                         | 14/03/03 23:55                        | Qa 38.3300                      | 23:53:36                      | 35.861                             | 38.218                             | 0.77                          | 58.1012                      | 51.4101                     | 54.7893                   |
| 15          | 14/03/04 00:05                         | 14/03/04 23:55                        | Qa 38.3300                      | 23:53:38                      | 35.707                             | 38.215                             | 0.76                          | 58.0552                      | 51.1904                     | 54.7857                   |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        |                                  |                                |
| 2        |                                  |                                |
| 3        | 16.68                            | 100.41                         |
| 4        | 15.56                            | 100.53                         |
| 5        | 15.17                            | 101.08                         |
| 6        | 14.51                            | 101.18                         |
| 7        | 14.55                            | 101.26                         |
| 8        | 14.91                            | 101.3                          |
| 9        | 15.54                            | 101.52                         |
| 10       | 13.18                            | 101.46                         |
| 11       | 13.51                            | 100.97                         |
| 12       | 12.68                            | 100.04                         |
| 13       | 12.05                            | 99.3                           |
| 14       | 13.89                            | 99.52                          |
| 15       | 12.76                            | 99.58                          |



# Marsaxlokk – PM<sub>2.5</sub> Sampler Report 14

| Sample | Effective start     | Effective stop      | Programmed | Elapsed    | Average    | Average      | Deviation | Gas meter    | Standard | Actual       |
|--------|---------------------|---------------------|------------|------------|------------|--------------|-----------|--------------|----------|--------------|
| #      | (yy/mm/dd hh.mm wd) | (yy/mm/dd hh.mm wd) | flow rate  | time       | flow rate  | flow rate Qa | flow rate | volume (m^3) | volume   | volume (m^3) |
|        |                     |                     | (l/min)    | (hh.mm.ss) | Qs (l/min) | (I/min)      | (%)       |              | (m^3)    |              |
| 1      | 14/02/18 00:05      | 14/02/18 23:55      | Qa 38.3300 | 23:48:31   | 35.738     | 38.206       | 1.53      | 57.5238      | 51.0528  | 54.578       |
| 2      | 14/02/19 00:05      | 14/02/19 23:55      | Qa 38.3300 | 23:48:30   | 35.718     | 38.206       | 1.48      | 57.7687      | 51.0236  | 54.5772      |
| 3      | 14/02/20 00:05      | 14/02/20 23:55      | Qa 38.3300 | 23:48:35   | 35.885     | 38.208       | 1.57      | 57.6631      | 51.2695  | 54.5836      |
| 4      | 14/02/21 00:05      | 14/02/21 23:55      | Qa 38.3300 | 23:48:34   | 36.121     | 38.2         | 1.53      | 58.1637      | 51.6017  | 54.5699      |
| 5      | 14/02/22 00:05      | 14/02/22 23:55      | Qa 38.3300 | 23:48:41   | 36.235     | 38.202       | 1.53      | 58.226       | 51.7683  | 54.5765      |
| 6      | 14/02/23 00:05      | 14/02/23 23:55      | Qa 38.3300 | 23:48:38   | 36.236     | 38.185       | 1.42      | 58.3792      | 51.7673  | 54.5522      |
| 7      | 14/02/24 00:05      | 14/02/24 23:55      | Qa 38.3300 | 23:48:32   | 36.205     | 38.194       | 1.52      | 58.2322      | 51.7192  | 54.5613      |
| 8      | 14/02/25 00:05      | 14/02/25 23:55      | Qa 38.3300 | 23:48:33   | 36.22      | 38.192       | 1.42      | 58.0027      | 51.7427  | 54.5586      |
| 9      | 14/02/26 00:05      | 14/02/26 23:55      | Qa 38.3300 | 23:48:36   | 36.479     | 38.193       | 1.53      | 58.0111      | 52.1126  | 54.5613      |
| 10     | 14/02/27 00:05      | 14/02/27 23:55      | Qa 38.3300 | 23:48:33   | 36.266     | 38.2         | 1.49      | 57.9963      | 51.8093  | 54.5719      |
| 11     | 14/02/28 00:05      | 14/02/28 23:55      | Qa 38.3300 | 23:48:33   | 36.032     | 38.214       | 1.5       | 57.8496      | 51.4728  | 54.5907      |
| 12     | 14/03/01 00:05      | 14/03/01 23:55      | Qa 38.3300 | 23:48:31   | 35.854     | 38.217       | 1.54      | 57.9442      | 51.2184  | 54.591       |
| 13     | 14/03/02 00:05      | 14/03/02 23:55      | Qa 38.3300 | 23:48:26   | 35.703     | 38.209       | 1.45      | 57.7233      | 50.9985  | 54.5776      |
| 14     | 14/03/03 00:05      | 14/03/03 23:55      | Qa 38.3300 | 23:48:39   | 35.84      | 38.194       | 1.54      | 57.6676      | 51.2017  | 54.5646      |
| 15     | 14/03/04 00:05      | 14/03/04 23:55      | Qa 38.3300 | 23:48:31   | 35.738     | 38.206       | 1.53      | 57.5238      | 51.0528  | 54.578       |



400

| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        |                                  |                                |
| 2        |                                  |                                |
| 3        | 17.22                            | 100.73                         |
| 4        | 16.12                            | 100.82                         |
| 5        | 15.81                            | 101.39                         |
| 6        | 15.17                            | 101.48                         |
| 7        | 15.36                            | 101.59                         |
| 8        | 15.79                            | 101.63                         |
| 9        | 16.27                            | 101.85                         |
| 10       | 13.75                            | 101.68                         |
| 11       | 14.18                            | 101.22                         |
| 12       | 13.3                             | 100.22                         |
| 13       | 12.57                            | 99.47                          |
| 14       | 14.51                            | 99.74                          |
| 15       | 13.3                             | 99.74                          |



Birżebbuġa – PM<sub>10</sub> Sampler Report 14

| Sample | Effective start     | Effective stop      | Programmed | Elapsed    | Average    | Average      | Deviation | Gas meter    | Standard | Actual       |
|--------|---------------------|---------------------|------------|------------|------------|--------------|-----------|--------------|----------|--------------|
| #      | (yy/mm/dd hh.mm wd) | (yy/mm/dd hh.mm wd) | flow rate  | time       | flow rate  | flow rate Qa | flow rate | volume (m^3) |          | volume (m^3) |
|        |                     |                     | (l/min)    | (hh.mm.ss) | Qs (l/min) | (I/min)      | (%)       |              | (m^3)    |              |
| 1      | 14/02/18 00:05      | 14/02/18 23:55      | Qa 38.3300 |            |            |              |           |              |          |              |
| 2      | 14/02/19 00:05      | 14/02/19 23:55      | Qa 38.3300 |            |            |              |           |              |          |              |
| 3      | 14/02/20 00:05      | 14/02/20 23:55      | Qa 38.3300 | 23:48:32   | 35.88      | 38.249       | 0.42      | 56.7456      | 51.2558  | 54.6395      |
| 4      | 14/02/21 00:05      | 14/02/21 23:55      | Qa 38.3300 | 23:48:38   | 36.007     | 38.244       | 0.47      | 57.0393      | 51.4404  | 54.6365      |
| 5      | 14/02/22 00:05      | 14/02/22 23:55      | Qa 38.3300 | 23:48:31   | 36.285     | 38.251       | 0.43      | 57.2346      | 51.8343  | 54.6414      |
| 6      | 14/02/23 00:05      | 14/02/23 23:55      | Qa 38.3300 | 23:48:33   | 36.399     | 38.251       | 0.45      | 57.2668      | 51.9973  | 54.6433      |
| 7      | 14/02/24 00:05      | 14/02/24 23:55      | Qa 38.3300 | 23:48:37   | 36.431     | 38.249       | 0.45      | 57.2954      | 52.0455  | 54.6403      |
| 8      | 14/02/25 00:05      | 14/02/25 23:55      | Qa 38.3300 | 23:48:40   | 36.47      | 38.243       | 0.45      | 57.0597      | 52.1042  | 54.6373      |
| 9      | 14/02/26 00:05      | 14/02/26 23:55      | Qa 38.3300 | 23:48:38   | 36.434     | 38.243       | 0.46      | 56.9965      | 52.0513  | 54.6353      |
| 10     | 14/02/27 00:05      | 14/02/27 23:55      | Qa 38.3300 | 23:48:33   | 36.736     | 38.252       | 0.4       | 56.9826      | 52.4787  | 54.6441      |
| 11     | 14/02/28 00:05      | 14/02/28 23:55      | Qa 38.3300 | 23:48:37   | 36.462     | 38.25        | 0.46      | 57.221       | 52.0903  | 54.6449      |
| 12     | 14/03/01 00:05      | 14/03/01 23:55      | Qa 38.3300 | 23:48:34   | 36.249     | 38.248       | 0.49      | 57.2453      | 51.7841  | 54.64        |
| 13     | 14/03/02 00:05      | 14/03/02 23:55      | Qa 38.3300 | 23:48:26   | 36.093     | 38.25        | 0.44      | 57.1141      | 51.5569  | 54.6373      |
| 14     | 14/03/03 00:05      | 14/03/03 23:55      | Qa 38.3300 | 23:48:32   | 35.856     | 38.248       | 0.49      | 57.1967      | 51.2219  | 54.6368      |
| 15     | 14/03/04 00:05      | 14/03/04 23:55      | Qa 38.3300 | 23:48:32   | 36.049     | 38.25        | 0.48      | 57.2286      | 51.4974  | 54.642       |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        |                                  |                                |
| 2        |                                  |                                |
| 3        | 16.12                            | 100.69                         |
| 4        | 15.41                            | 100.81                         |
| 5        | 14.89                            | 101.39                         |
| 6        | 14.28                            | 101.49                         |
| 7        | 14.14                            | 101.54                         |
| 8        | 13.97                            | 101.6                          |
| 9        | 14.93                            | 101.84                         |
| 10       | 12.63                            | 101.84                         |
| 11       | 13.21                            | 101.29                         |
| 12       | 12.29                            | 100.38                         |
| 13       | 11.42                            | 99.64                          |
| 14       | 13.71                            | 99.79                          |
| 15       | 12.46                            | 99.88                          |



# Birżebbuġa – PM<sub>2.5</sub> Sampler Report 14

| Sample | Effective start     | Effective stop      | Programmed | Elapsed    | Average    | Average      | Deviation | Gas meter    | Standard | Actual       |
|--------|---------------------|---------------------|------------|------------|------------|--------------|-----------|--------------|----------|--------------|
| #      | (yy/mm/dd hh.mm wd) | (yy/mm/dd hh.mm wd) | flow rate  | time       | flow rate  | flow rate Qa | flow rate | volume (m^3) | volume   | volume (m^3) |
|        |                     |                     | (l/min)    | (hh.mm.ss) | Qs (l/min) | (I/min)      | (%)       |              | (m^3)    |              |
| 1      | 14/02/18 00:05      | 14/02/18 23:55      | Qa 38.3300 |            |            |              |           |              |          |              |
| 2      | 14/02/19 00:05      | 14/02/19 23:55      | Qa 38.3300 |            |            |              |           |              |          |              |
| 3      | 14/02/20 00:05      | 14/02/20 23:55      | Qa 38.3300 | 23:48:30   | 35.756     | 38.232       | 0.69      | 56.501       | 51.0787  | 54.6154      |
| 4      | 14/02/21 00:05      | 14/02/21 23:55      | Qa 38.3300 | 23:48:33   | 35.958     | 38.236       | 0.7       | 56.7425      | 51.3668  | 54.6183      |
| 5      | 14/02/22 00:05      | 14/02/22 23:55      | Qa 38.3300 | 23:48:32   | 36.198     | 38.246       | 0.67      | 57.2589      | 51.7084  | 54.6345      |
| 6      | 14/02/23 00:05      | 14/02/23 23:55      | Qa 38.3300 | 23:48:29   | 36.317     | 38.24        | 0.68      | 57.3318      | 51.8808  | 54.6271      |
| 7      | 14/02/24 00:05      | 14/02/24 23:55      | Qa 38.3300 | 23:48:30   | 36.351     | 38.244       | 0.67      | 57.4776      | 51.9374  | 54.6421      |
| 8      | 14/02/25 00:05      | 14/02/25 23:55      | Qa 38.3300 | 23:48:42   | 36.273     | 38.24        | 0.71      | 57.4094      | 51.8241  | 54.6339      |
| 9      | 14/02/26 00:05      | 14/02/26 23:55      | Qa 38.3300 | 23:48:44   | 36.28      | 38.248       | 0.65      | 57.3755      | 51.8303  | 54.6414      |
| 10     | 14/02/27 00:05      | 14/02/27 23:55      | Qa 38.3300 | 23:48:36   | 36.556     | 38.236       | 0.73      | 57.2764      | 52.223   | 54.6234      |
| 11     | 14/02/28 00:05      | 14/02/28 23:55      | Qa 38.3300 | 23:48:36   | 36.318     | 38.237       | 0.74      | 57.5209      | 51.8869  | 54.6296      |
| 12     | 14/03/01 00:05      | 14/03/01 23:55      | Qa 38.3300 | 23:48:42   | 36.135     | 38.25        | 0.68      | 57.19        | 51.6179  | 54.6392      |
| 13     | 14/03/02 00:05      | 14/03/02 23:55      | Qa 38.3300 | 23:48:29   | 35.906     | 38.239       | 0.72      | 57.2677      | 51.2943  | 54.6274      |
| 14     | 14/03/03 00:05      | 14/03/03 23:55      | Qa 38.3300 | 23:48:35   | 35.813     | 38.241       | 0.68      | 57.0229      | 51.1615  | 54.6293      |
| 15     | 14/03/04 00:05      | 14/03/04 23:55      | Qa 38.3300 | 23:48:34   | 35.973     | 38.239       | 0.71      | 56.9477      | 51.3854  | 54.6227      |



| Average ambient temperature (°C) | Average ambient pressure (kPa)                                                                                                                                |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  |                                                                                                                                                               |
| 16.62                            | 100.56                                                                                                                                                        |
| 15.44                            | 100.71                                                                                                                                                        |
| 15.27                            | 101.29                                                                                                                                                        |
| 14.5                             | 101.37                                                                                                                                                        |
| 14.52                            | 101.46                                                                                                                                                        |
| 15.22                            | 101.5                                                                                                                                                         |
| 15.85                            | 101.72                                                                                                                                                        |
| 13.3                             | 101.62                                                                                                                                                        |
| 13.94                            | 101.18                                                                                                                                                        |
| 12.72                            | 100.21                                                                                                                                                        |
| 12.28                            | 99.45                                                                                                                                                         |
| 13.75                            | 99.7                                                                                                                                                          |
| 12.58                            | 99.74                                                                                                                                                         |
| 16.62                            | 100.56                                                                                                                                                        |
|                                  | 16.62         15.44         15.27         14.5         14.52         15.22         15.85         13.3         13.94         12.72         13.75         12.58 |



| Sample<br># | Effective start<br>(yy/mm/dd hh.mm wd) | Effective stop<br>(yy/mm/dd hh.mm wd) | Programmed<br>flow rate (I/min) | Elapsed<br>time<br>(hh.mm.ss) | Average<br>flow rate<br>Qs (I/min) | Average<br>flow rate Qa<br>(I/min) | Deviation<br>flow rate<br>(%) | Gas meter<br>volume<br>(m^3) | Standard<br>volume<br>(m^3) | Actual<br>volume<br>(m^3) |
|-------------|----------------------------------------|---------------------------------------|---------------------------------|-------------------------------|------------------------------------|------------------------------------|-------------------------------|------------------------------|-----------------------------|---------------------------|
| 1           | 14/03/05 00:05                         | 14/03/05 23:55                        | Qa 38.3300                      |                               |                                    |                                    |                               |                              |                             |                           |
| 2           | 14/03/06 00:05                         | 14/03/06 23:55                        | Qa 38.3300                      |                               |                                    |                                    |                               |                              |                             |                           |
| 3           | 14/03/07 00:05                         | 14/03/07 23:55                        | Qa 38.3300                      | 23:48:38                      | 36.104                             | 38.215                             | 0.69                          | 58.5879                      | 51.5788                     | 54.5955                   |
| 4           | 14/03/08 00:05                         | 14/03/08 23:55                        | Qa 38.3300                      | 23:48:35                      | 36.201                             | 38.221                             | 0.67                          | 58.4556                      | 51.716                      | 54.6017                   |
| 5           | 14/03/09 00:05                         | 14/03/09 23:55                        | Qa 38.3300                      | 23:48:32                      | 36.343                             | 38.216                             | 0.7                           | 58.3485                      | 51.9176                     | 54.5927                   |
| 6           | 14/03/10 00:05                         | 14/03/10 23:55                        | Qa 38.3300                      | 23:48:34                      | 36.163                             | 38.21                              | 0.69                          | 58.5861                      | 51.6616                     | 54.5862                   |
| 7           | 14/03/11 00:05                         | 14/03/11 23:55                        | Qa 38.3300                      | 23:48:34                      | 36.3                               | 38.214                             | 0.7                           | 58.4634                      | 51.8557                     | 54.5911                   |
| 8           | 14/03/12 00:05                         | 14/03/12 23:55                        | Qa 38.3300                      | 23:48:38                      | 36.393                             | 38.219                             | 0.67                          | 58.5335                      | 51.9929                     | 54.6011                   |
| 9           | 14/03/13 00:05                         | 14/03/13 23:55                        | Qa 38.3300                      | 23:48:39                      | 36.373                             | 38.216                             | 0.73                          | 58.0711                      | 51.9637                     | 54.5976                   |
| 10          | 14/03/14 00:05                         | 14/03/14 23:55                        | Qa 38.3300                      | 23:48:34                      | 36.065                             | 38.221                             | 0.72                          | 57.9554                      | 51.5217                     | 54.6014                   |
| 11          | 14/03/15 00:05                         | 14/03/15 23:55                        | Qa 38.3300                      | 23:48:27                      | 35.948                             | 38.219                             | 0.71                          | 58.29                        | 51.3492                     | 54.594                    |
| 12          | 14/03/16 00:05                         | 14/03/16 23:55                        | Qa 38.3300                      | 23:48:39                      | 35.94                              | 38.218                             | 0.69                          | 58.5232                      | 51.3458                     | 54.5997                   |
| 13          | 14/03/17 00:05                         | 14/03/17 23:55                        | Qa 38.3300                      | 23:48:32                      | 36.004                             | 38.208                             | 0.75                          | 58.5159                      | 51.433                      | 54.5811                   |
| 14          | 14/03/18 00:05                         | 14/03/18 23:55                        | Qa 38.3300                      | 23:48:32                      | 35.897                             | 38.219                             | 0.67                          | 58.5275                      | 51.2804                     | 54.5963                   |
| 15          | 14/03/19 00:05                         | 14/03/19 23:55                        | Qa 38.3300                      | 23:48:32                      | 36.005                             | 38.218                             | 0.67                          | 58.5365                      | 51.4362                     | 54.5978                   |

Marsaxlokk – PM<sub>10</sub> Sampler Report 15





| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        |                                  |                                |
| 2        |                                  |                                |
| 3        | 14.02                            | 100.67                         |
| 4        | 14.03                            | 100.93                         |
| 5        | 13.35                            | 101.1                          |
| 6        | 13.71                            | 100.74                         |
| 7        | 13.74                            | 101.12                         |
| 8        | 14.96                            | 101.8                          |
| 9        | 14.65                            | 101.64                         |
| 10       | 16.14                            | 101.29                         |
| 11       | 16.07                            | 100.94                         |
| 12       | 15.89                            | 100.86                         |
| 13       | 16.76                            | 101.37                         |
| 14       | 18.22                            | 101.55                         |
| 15       | 17.26                            | 101.52                         |



# Marsaxlokk – PM<sub>2.5</sub> Sampler Report 15

| Sample<br># | Effective start<br>(yy/mm/dd hh.mm wd) | Effective stop<br>(yy/mm/dd hh.mm wd) | Programmed<br>flow rate<br>(I/min) | Elapsed<br>time<br>(hh.mm.ss) | Average<br>flow rate<br>Qs (I/min) | Average<br>flow rate Qa<br>(I/min) | Deviation<br>flow rate<br>(%) | Gas meter<br>volume (m^3) | Standard<br>volume<br>(m^3) | Actual<br>volume (m^3) |
|-------------|----------------------------------------|---------------------------------------|------------------------------------|-------------------------------|------------------------------------|------------------------------------|-------------------------------|---------------------------|-----------------------------|------------------------|
| 1           | 14/03/05 00:05                         | 14/03/05 23:55                        | Qa 38.3300                         |                               |                                    |                                    |                               |                           |                             |                        |
| 2           | 14/03/06 00:05                         | 14/03/06 23:55                        | Qa 38.3300                         |                               |                                    |                                    |                               |                           |                             |                        |
| 3           | 14/03/07 00:05                         | 14/03/07 23:55                        | Qa 38.3300                         | 23:48:35                      | 36.09                              | 38.186                             | 1.34                          | 58.0157                   | 51.5564                     | 54.5517                |
| 4           | 14/03/08 00:05                         | 14/03/08 23:55                        | Qa 38.3300                         | 23:48:26                      | 36.192                             | 38.199                             | 1.34                          | 57.8812                   | 51.6978                     | 54.5642                |
| 5           | 14/03/09 00:05                         | 14/03/09 23:55                        | Qa 38.3300                         | 23:48:38                      | 36.321                             | 38.191                             | 1.31                          | 57.8016                   | 51.8886                     | 54.5597                |
| 6           | 14/03/10 00:05                         | 14/03/10 23:55                        | Qa 38.3300                         | 23:48:37                      | 36.148                             | 38.176                             | 1.35                          | 58.0416                   | 51.6404                     | 54.5395                |
| 7           | 14/03/11 00:05                         | 14/03/11 23:55                        | Qa 38.3300                         | 23:48:28                      | 36.309                             | 38.212                             | 1.56                          | 58.0723                   | 51.8673                     | 54.5848                |
| 8           | 14/03/12 00:05                         | 14/03/12 23:55                        | Qa 38.3300                         | 23:48:37                      | 36.404                             | 38.208                             | 1.43                          | 58.0672                   | 52.0068                     | 54.5843                |
| 9           | 14/03/13 00:05                         | 14/03/13 23:55                        | Qa 38.3300                         | 23:48:37                      | 36.365                             | 38.211                             | 1.56                          | 57.6285                   | 51.9509                     | 54.5879                |
| 10          | 14/03/14 00:05                         | 14/03/14 23:55                        | Qa 38.3300                         | 23:48:36                      | 36.042                             | 38.184                             | 1.44                          | 57.4411                   | 51.4907                     | 54.5509                |
| 11          | 14/03/15 00:05                         | 14/03/15 23:55                        | Qa 38.3300                         | 23:48:35                      | 35.954                             | 38.195                             | 1.36                          | 57.7699                   | 51.3631                     | 54.5652                |
| 12          | 14/03/16 00:05                         | 14/03/16 23:55                        | Qa 38.3300                         | 23:48:30                      | 35.935                             | 38.19                              | 1.26                          | 57.9346                   | 51.3334                     | 54.5544                |
| 13          | 14/03/17 00:05                         | 14/03/17 23:55                        | Qa 38.3300                         | 23:48:32                      | 36.01                              | 38.183                             | 1.39                          | 57.9944                   | 51.4417                     | 54.5462                |
| 14          | 14/03/18 00:05                         | 14/03/18 23:55                        | Qa 38.3300                         | 23:48:30                      | 35.911                             | 38.181                             | 1.29                          | 58.0549                   | 51.2997                     | 54.5418                |
| 15          | 14/03/19 00:05                         | 14/03/19 23:55                        | Qa 38.3300                         | 23:48:37                      | 36.011                             | 38.181                             | 1.35                          | 58.06                     | 51.446                      | 54.5457                |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        |                                  |                                |
| 2        |                                  |                                |
| 3        | 14.57                            | 100.9                          |
| 4        | 14.56                            | 101.15                         |
| 5        | 13.79                            | 101.26                         |
| 6        | 14.18                            | 100.95                         |
| 7        | 14.21                            | 101.32                         |
| 8        | 15.53                            | 102.06                         |
| 9        | 15.18                            | 101.82                         |
| 10       | 16.76                            | 101.54                         |
| 11       | 16.64                            | 101.22                         |
| 12       | 16.55                            | 101.15                         |
| 13       | 17.44                            | 101.69                         |
| 14       | 18.88                            | 101.92                         |
| 15       | 17.87                            | 101.85                         |



Birżebbuġa – PM<sub>10</sub> Sampler Report 15

| Sample | Effective start     | Effective stop      | Programmed | Elapsed    | Average    | Average      | Deviation | Gas meter    | Standard | Actual       |
|--------|---------------------|---------------------|------------|------------|------------|--------------|-----------|--------------|----------|--------------|
| #      | (yy/mm/dd hh.mm wd) | (yy/mm/dd hh.mm wd) | flow rate  | time       | flow rate  | flow rate Qa | flow rate | volume (m^3) |          | volume (m^3) |
|        |                     |                     | (l/min)    | (hh.mm.ss) | Qs (l/min) | (I/min)      | (%)       |              | (m^3)    |              |
| 1      | 14/03/05 00:05      | 14/03/05 23:55      | Qa 38.3300 |            |            |              |           |              |          |              |
| 2      | 14/03/06 00:05      | 14/03/06 23:55      | Qa 38.3300 |            |            |              |           |              |          |              |
| 1      | 14/03/07 00:05      | 14/03/07 23:55      | Qa 38.3300 | 23:48:37   | 36.256     | 38.255       | 0.45      | 57.2963      | 51.7956  | 54.6511      |
| 2      | 14/03/08 00:05      | 14/03/08 23:55      | Qa 38.3300 | 23:48:25   | 36.43      | 38.253       | 0.43      | 57.1949      | 52.0391  | 54.6426      |
| 3      | 14/03/09 00:05      | 14/03/09 23:55      | Qa 38.3300 | 23:48:33   | 36.547     | 38.253       | 0.45      | 57.0328      | 52.2099  | 54.6458      |
| 4      | 14/03/10 00:05      | 14/03/10 23:55      | Qa 38.3300 | 23:48:33   | 36.437     | 38.252       | 0.46      | 57.3132      | 52.0523  | 54.643       |
| 5      | 14/03/11 00:05      | 14/03/11 23:55      | Qa 38.3300 | 23:48:36   | 36.619     | 38.248       | 0.44      | 57.5695      | 52.3143  | 54.6392      |
| 6      | 14/03/12 00:05      | 14/03/12 23:55      | Qa 38.3300 | 23:48:35   | 36.72      | 38.255       | 0.44      | 57.1829      | 52.4581  | 54.6506      |
| 7      | 14/03/13 00:05      | 14/03/13 23:55      | Qa 38.3300 | 23:48:40   | 36.561     | 38.237       | 0.45      | 56.5906      | 52.2331  | 54.6273      |
| 8      | 14/03/14 00:05      | 14/03/14 23:55      | Qa 38.3300 | 23:48:37   | 36.274     | 38.239       | 0.4       | 56.5427      | 51.8206  | 54.6289      |
| 9      | 14/03/15 00:05      | 14/03/15 23:55      | Qa 38.3300 | 23:48:39   | 36.174     | 38.245       | 0.44      | 56.7692      | 51.6794  | 54.6381      |
| 10     | 14/03/16 00:05      | 14/03/16 23:55      | Qa 38.3300 | 23:48:33   | 36.023     | 38.245       | 0.47      | 57.1139      | 51.4628  | 54.6367      |
| 11     | 14/03/17 00:05      | 14/03/17 23:55      | Qa 38.3300 | 23:48:39   | 36.098     | 38.244       | 0.47      | 57.1185      | 51.5715  | 54.6367      |
| 12     | 14/03/18 00:05      | 14/03/18 23:55      | Qa 38.3300 | 23:48:28   | 36.119     | 38.246       | 0.47      | 57.0098      | 51.5935  | 54.633       |
| 13     | 14/03/19 00:05      | 14/03/19 23:55      | Qa 38.3300 | 23:23:13   | 36.27      | 38.249       | 0.45      | 56.3129      | 50.8941  | 53.6721      |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |  |  |  |  |  |
|----------|----------------------------------|--------------------------------|--|--|--|--|--|
| 1        |                                  |                                |  |  |  |  |  |
| 2        |                                  |                                |  |  |  |  |  |
| 3        | 14.27                            | 100.92                         |  |  |  |  |  |
| 4        | 13.8                             | 101.23                         |  |  |  |  |  |
| 5        | 13.28                            | 101.45                         |  |  |  |  |  |
| 6        | 13.34                            | 101.05                         |  |  |  |  |  |
| 7        | 12.84                            | 101.42                         |  |  |  |  |  |
| 8        | 14.3                             | 102.08                         |  |  |  |  |  |
| 9        | 14.74                            | 101.98                         |  |  |  |  |  |
| 10       | 15.77                            | 101.58                         |  |  |  |  |  |
| 11       | 15.9                             | 101.23                         |  |  |  |  |  |
| 12       | 15.97                            | 101.06                         |  |  |  |  |  |
| 13       | 16.94                            | 101.55                         |  |  |  |  |  |
| 14       | 17.77                            | 101.73                         |  |  |  |  |  |
| 15       | 16.17                            | 101.69                         |  |  |  |  |  |



# Birżebbuġa – PM<sub>2.5</sub> Sampler Report 15

| Sample<br># | Effective start<br>(yy/mm/dd hh.mm wd) | Effective stop<br>(yy/mm/dd hh.mm wd) | Programmed<br>flow rate<br>(I/min) | Elapsed<br>time<br>(hh.mm.ss) | Average<br>flow rate<br>Qs (I/min) | Average<br>flow rate Qa<br>(I/min) | Deviation<br>flow rate<br>(%) |         | Standard<br>volume<br>(m^3) | Actual<br>volume (m^3) |
|-------------|----------------------------------------|---------------------------------------|------------------------------------|-------------------------------|------------------------------------|------------------------------------|-------------------------------|---------|-----------------------------|------------------------|
| 1           | 14/03/05 00:05                         | 14/03/05 23:55                        | Qa 38.3300                         |                               |                                    |                                    |                               |         |                             |                        |
| 2           | 14/03/06 00:05                         | 14/03/06 23:55                        | Qa 38.3300                         |                               |                                    |                                    |                               |         |                             |                        |
| 3           | 14/03/07 00:05                         | 14/03/07 23:55                        | Qa 38.3300                         | 23:48:27                      | 36.159                             | 38.246                             | 0.7                           | 57.0866 | 51.6504                     | 54.6321                |
| 4           | 14/03/08 00:05                         | 14/03/08 23:55                        | Qa 38.3300                         | 23:48:38                      | 36.292                             | 38.237                             | 0.7                           | 56.6988 | 51.8481                     | 54.6269                |
| 5           | 14/03/09 00:05                         | 14/03/09 23:55                        | Qa 38.3300                         | 23:48:28                      | 36.412                             | 38.233                             | 0.72                          | 56.6119 | 52.0133                     | 54.6152                |
| 6           | 14/03/10 00:05                         | 14/03/10 23:55                        | Qa 38.3300                         | 23:48:30                      | 36.275                             | 38.233                             | 0.72                          | 56.8663 | 51.8182                     | 54.616                 |
| 7           | 14/03/11 00:05                         | 14/03/11 23:55                        | Qa 38.3300                         | 23:48:38                      | 36.492                             | 38.244                             | 0.67                          | 57.1964 | 52.1338                     | 54.636                 |
| 8           | 14/03/12 00:05                         | 14/03/12 23:55                        | Qa 38.3300                         | 23:48:33                      | 36.543                             | 38.232                             | 0.75                          | 56.9981 | 52.2079                     | 54.6155                |
| 9           | 14/03/13 00:05                         | 14/03/13 23:55                        | Qa 38.3300                         | 23:48:33                      | 36.431                             | 38.241                             | 0.63                          | 56.6146 | 52.0441                     | 54.6292                |
| 10          | 14/03/14 00:05                         | 14/03/14 23:55                        | Qa 38.3300                         | 23:48:40                      | 36.171                             | 38.231                             | 0.66                          | 56.6953 | 51.6758                     | 54.6192                |
| 11          | 14/03/15 00:05                         | 14/03/15 23:55                        | Qa 38.3300                         | 23:48:30                      | 36.034                             | 38.232                             | 0.72                          | 56.58   | 51.4753                     | 54.6148                |
| 12          | 14/03/16 00:05                         | 14/03/16 23:55                        | Qa 38.3300                         | 23:48:33                      | 36.023                             | 38.24                              | 0.67                          | 57.1471 | 51.4602                     | 54.6283                |
| 13          | 14/03/17 00:05                         | 14/03/17 23:55                        | Qa 38.3300                         | 23:48:37                      | 36.085                             | 38.239                             | 0.69                          | 57.2001 | 51.5507                     | 54.6269                |
| 14          | 14/03/18 00:05                         | 14/03/18 23:55                        | Qa 38.3300                         | 23:48:35                      | 36.052                             | 38.245                             | 0.66                          | 57.2342 | 51.505                      | 54.6377                |
| 15          | 14/03/19 00:05                         | 14/03/19 23:55                        | Qa 38.3300                         | 23:23:28                      | 36.237                             | 38.244                             | 0.69                          | 56.3489 | 50.8569                     | 53.6746                |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        |                                  |                                |
| 2        |                                  |                                |
| 3        | 14.27                            | 100.83                         |
| 4        | 13.8                             | 101.06                         |
| 5        | 13.28                            | 101.22                         |
| 6        | 13.34                            | 100.86                         |
| 7        | 12.84                            | 101.26                         |
| 8        | 14.3                             | 101.96                         |
| 9        | 14.74                            | 101.77                         |
| 10       | 15.77                            | 101.43                         |
| 11       | 15.9                             | 101.09                         |
| 12       | 15.97                            | 101.06                         |
| 13       | 16.94                            | 101.58                         |
| 14       | 17.77                            | 101.76                         |
| 15       | 16.17                            | 101.72                         |



# Marsaxlokk – PM10 Sampler Report 16

| Sample<br># | Effective start<br>(yy/mm/dd hh.mm wd) | Effective stop<br>(yy/mm/dd hh.mm wd) | Programmed<br>flow rate (I/min) | Elapsed<br>time<br>(hh.mm.ss) | Average<br>flow rate<br>Qs (I/min) | Average<br>flow rate Qa<br>(I/min) | Deviation<br>flow rate<br>(%) | Gas meter<br>volume<br>(m^3) | Standard<br>volume<br>(m^3) | Actual<br>volume<br>(m^3) |
|-------------|----------------------------------------|---------------------------------------|---------------------------------|-------------------------------|------------------------------------|------------------------------------|-------------------------------|------------------------------|-----------------------------|---------------------------|
| 1           | 14/03/20 00:05                         | 14/03/20 23:55                        | Qa 38.3300                      | 23:41:57                      | 36.08                              | 38.215                             | 0.75                          | 58.2525                      | 51.3037                     | 54.3394                   |
| 2           | 14/03/21 00:05                         | 14/03/21 23:55                        | Qa 38.3300                      | 23:48:35                      | 36.011                             | 38.219                             | 0.74                          | 58.4038                      | 51.4447                     | 54.598                    |
| 3           | 14/03/22 00:05                         | 14/03/22 23:55                        | Qa 38.3300                      | 23:48:31                      | 35.968                             | 38.219                             | 0.76                          | 58.2228                      | 51.3806                     | 54.5966                   |
| 4           | 14/03/23 00:05                         | 14/03/23 23:55                        | Qa 38.3300                      | 23:48:33                      | 35.779                             | 38.22                              | 0.75                          | 58.0991                      | 51.1114                     | 54.5988                   |
| 5           | 14/03/24 00:05                         | 14/03/24 23:55                        | Qa 38.3300                      | 23:48:36                      | 36.025                             | 38.206                             | 0.75                          | 58.161                       | 51.465                      | 54.5813                   |
| 6           | 14/03/25 00:05                         | 14/03/25 23:55                        | Qa 38.3300                      | 23:48:40                      | 35.881                             | 38.222                             | 0.7                           | 57.9856                      | 51.2611                     | 54.6059                   |
| 7           | 14/03/26 00:05                         | 14/03/26 23:55                        | Qa 38.3300                      | 23:48:29                      | 35.759                             | 38.221                             | 0.69                          | 57.9829                      | 51.0807                     | 54.5987                   |
| 8           | 14/03/27 00:05                         | 14/03/27 23:55                        | Qa 38.3300                      | 23:48:33                      | 35.762                             | 38.231                             | 0.68                          | 57.991                       | 51.0871                     | 54.615                    |
| 9           | 14/03/28 00:05                         | 14/03/28 23:55                        | Qa 38.3300                      | 23:48:40                      | 36.005                             | 38.22                              | 0.72                          | 58.1053                      | 51.4407                     | 54.6061                   |
| 10          | 14/03/29 00:05                         | 14/03/29 23:55                        | Qa 38.3300                      | 23:48:34                      | 36.002                             | 38.222                             | 0.67                          | 58.252                       | 51.4304                     | 54.6017                   |
| 11          | 14/03/30 00:05                         | 14/03/30 23:55                        | Qa 38.3300                      | 23:48:33                      | 35.792                             | 38.216                             | 0.67                          | 58.1373                      | 51.1298                     | 54.5929                   |
| 12          | 14/03/31 00:05                         | 14/03/31 23:55                        | Qa 38.3300                      | 23:48:39                      | 35.755                             | 38.206                             | 0.74                          | 58.3684                      | 51.0834                     | 54.5845                   |
| 13          | 14/04/01 00:05                         | 14/04/01 23:55                        | Qa 38.3300                      | 23:48:36                      | 35.825                             | 38.214                             | 0.76                          | 58.2607                      | 51.1792                     | 54.5918                   |
| 14          | 14/04/02 00:05                         | 14/04/02 23:55                        | Qa 38.3300                      | 23:48:34                      | 35.826                             | 38.228                             | 0.69                          | 58.1917                      | 51.1803                     | 54.6116                   |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |  |  |  |  |  |
|----------|----------------------------------|--------------------------------|--|--|--|--|--|
| 1        | 16.66                            | 101.53                         |  |  |  |  |  |
| 2        | 17.07                            | 101.47                         |  |  |  |  |  |
| 3        | 16.68                            | 101.21                         |  |  |  |  |  |
| 4        | 16.98                            | 100.78                         |  |  |  |  |  |
| 5        | 15.18                            | 100.88                         |  |  |  |  |  |
| 6        | 15.74                            | 100.63                         |  |  |  |  |  |
| 7        | 15.8                             | 100.31                         |  |  |  |  |  |
| 8        | 15.62                            | 100.23                         |  |  |  |  |  |
| 9        | 15.39                            | 100.86                         |  |  |  |  |  |
| 10       | 16.14                            | 101.11                         |  |  |  |  |  |
| 11       | 17.19                            | 100.9                          |  |  |  |  |  |
| 12       | 17.38                            | 100.89                         |  |  |  |  |  |
| 13       | 17.45                            | 101.09                         |  |  |  |  |  |
| 14       | 17.29                            | 101                            |  |  |  |  |  |



# Marsaxlokk – PM<sub>2.5</sub> Sampler Report 16

| Sample<br># | Effective start<br>(yy/mm/dd hh.mm wd) | Effective stop<br>(yy/mm/dd hh.mm wd) | Programmed<br>flow rate<br>(I/min) | Elapsed<br>time<br>(hh.mm.ss) | flow rate | Average<br>flow rate Qa<br>(I/min) | Deviation<br>flow rate<br>(%) |              | er Standard<br>3) volume<br>(m^3) | Actual<br>volume (m^3) |
|-------------|----------------------------------------|---------------------------------------|------------------------------------|-------------------------------|-----------|------------------------------------|-------------------------------|--------------|-----------------------------------|------------------------|
|             |                                        |                                       |                                    |                               |           |                                    |                               | volume (m^3) |                                   |                        |
| 1           | 14/03/20 00:05                         | 14/03/20 23:55                        | Qa 38.3300                         | 23:45:58                      | 36.1      | 38.184                             | 1.25                          | 58.0626      | 51.4769                           | 54.4482                |
| 2           | 14/03/21 00:05                         | 14/03/21 23:55                        | Qa 38.3300                         | 23:48:39                      | 36.017    | 38.169                             | 1.15                          | 58.1406      | 51.4578                           | 54.5325                |
| 3           | 14/03/22 00:05                         | 14/03/22 23:55                        | Qa 38.3300                         | 23:48:32                      | 35.962    | 38.176                             | 1.19                          | 58.0457      | 51.3732                           | 54.5361                |
| 4           | 14/03/23 00:05                         | 14/03/23 23:55                        | Qa 38.3300                         | 23:48:37                      | 35.767    | 38.175                             | 1.27                          | 57.8584      | 51.098                            | 54.538                 |
| 5           | 14/03/24 00:05                         | 14/03/24 23:55                        | Qa 38.3300                         | 23:48:41                      | 36.006    | 38.165                             | 1.34                          | 57.8642      | 51.4401                           | 54.5251                |
| 6           | 14/03/25 00:05                         | 14/03/25 23:55                        | Qa 38.3300                         | 23:48:33                      | 35.86     | 38.174                             | 1.27                          | 57.747       | 51.2291                           | 54.5358                |
| 7           | 14/03/26 00:05                         | 14/03/26 23:55                        | Qa 38.3300                         | 23:48:31                      | 35.737    | 38.185                             | 1.29                          | 57.7739      | 51.0505                           | 54.5468                |
| 8           | 14/03/27 00:05                         | 14/03/27 23:55                        | Qa 38.3300                         | 23:48:30                      | 35.742    | 38.182                             | 1.33                          | 57.7268      | 51.0582                           | 54.544                 |
| 9           | 14/03/28 00:05                         | 14/03/28 23:55                        | Qa 38.3300                         | 23:48:29                      | 35.974    | 38.171                             | 1.26                          | 57.8445      | 51.3889                           | 54.5269                |
| 10          | 14/03/29 00:05                         | 14/03/29 23:55                        | Qa 38.3300                         | 23:48:35                      | 35.995    | 38.182                             | 1.2                           | 58.0001      | 51.4219                           | 54.547                 |
| 11          | 14/03/30 00:05                         | 14/03/30 23:55                        | Qa 38.3300                         | 23:48:38                      | 35.8      | 38.177                             | 1.23                          | 57.8361      | 51.1473                           | 54.543                 |
| 12          | 14/03/31 00:05                         | 14/03/31 23:55                        | Qa 38.3300                         | 23:48:38                      | 35.778    | 38.172                             | 1.24                          | 58.0698      | 51.114                            | 54.5323                |
| 13          | 14/04/01 00:05                         | 14/04/01 23:55                        | Qa 38.3300                         | 23:48:38                      | 35.813    | 38.169                             | 1.23                          | 57.9807      | 51.166                            | 54.5289                |
| 14          | 14/04/02 00:05                         | 14/04/02 23:55                        | Qa 38.3300                         | 23:48:35                      | 35.814    | 38.182                             | 1.13                          | 57.9288      | 51.1655                           | 54.5482                |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        | 17.29                            | 101.89                         |
| 2        | 17.79                            | 101.87                         |
| 3        | 17.43                            | 101.57                         |
| 4        | 17.74                            | 101.13                         |
| 5        | 15.88                            | 101.18                         |
| 6        | 16.41                            | 100.93                         |
| 7        | 16.56                            | 100.61                         |
| 8        | 16.3                             | 100.54                         |
| 9        | 16.12                            | 101.16                         |
| 10       | 16.87                            | 101.45                         |
| 11       | 17.86                            | 101.26                         |
| 12       | 18.05                            | 101.28                         |
| 13       | 18.31                            | 101.48                         |
| 14       | 18.1                             | 101.37                         |



Birżebbuġa – PM<sub>10</sub> Sampler Report 16

| Sample | Effective start     | Effective stop      | Programmed | Elapsed    | Average    | Average      | Deviation | Gas meter    | Standard | Actual       |
|--------|---------------------|---------------------|------------|------------|------------|--------------|-----------|--------------|----------|--------------|
| #      | (yy/mm/dd hh.mm wd) | (yy/mm/dd hh.mm wd) | flow rate  | time       | flow rate  | flow rate Qa | flow rate | volume (m^3) | volume   | volume (m^3) |
|        |                     |                     | (I/min)    | (hh.mm.ss) | Qs (l/min) | (I/min)      | (%)       |              | (m^3)    |              |
| 1      | 14/03/20 00:05      | 14/03/20 23:55      | Qa 38.3300 | 23:42:18   | 36.353     | 38.254       | 0.45      | 56.6003      | 51.7072  | 54.41        |
| 2      | 14/03/21 00:05      | 14/03/21 23:55      | Qa 38.3300 | 23:48:38   | 36.268     | 38.237       | 0.44      | 56.6071      | 51.814   | 54.6265      |
| 3      | 14/03/22 00:05      | 14/03/22 23:55      | Qa 38.3300 | 23:48:41   | 36.187     | 38.243       | 0.47      | 56.648       | 51.6997  | 54.637       |
| 4      | 14/03/23 00:05      | 14/03/23 23:55      | Qa 38.3300 | 23:48:33   | 35.963     | 38.244       | 0.45      | 56.6288      | 51.3742  | 54.6329      |
| 5      | 14/03/24 00:05      | 14/03/24 23:55      | Qa 38.3300 | 23:48:40   | 36.147     | 38.249       | 0.48      | 57.0464      | 51.6409  | 54.644       |
| 6      | 14/03/25 00:05      | 14/03/25 23:55      | Qa 38.3300 | 23:41:58   | 36.062     | 38.251       | 0.48      | 56.8464      | 51.2781  | 54.3911      |
| 7      | 14/03/26 00:05      | 14/03/26 23:55      | Qa 38.3300 | 23:48:37   | 35.931     | 38.245       | 0.41      | 56.8491      | 51.3308  | 54.637       |
| 8      | 14/03/27 00:05      | 14/03/27 23:55      | Qa 38.3300 | 23:48:37   | 35.899     | 38.251       | 0.44      | 57.1919      | 51.2882  | 54.648       |
| 9      | 14/03/28 00:05      | 14/03/28 23:55      | Qa 38.3300 | 23:48:31   | 36.134     | 38.251       | 0.46      | 57.1846      | 51.6169  | 54.6425      |
| 10     | 14/03/29 00:05      | 14/03/29 23:55      | Qa 38.3300 | 23:48:40   | 36.229     | 38.242       | 0.45      | 56.6719      | 51.7606  | 54.637       |
| 11     | 14/03/30 00:05      | 14/03/30 23:55      | Qa 38.3300 | 23:48:33   | 36.02      | 38.243       | 0.43      | 56.4551      | 51.4576  | 54.6335      |
| 12     | 14/03/31 00:05      | 14/03/31 23:55      | Qa 38.3300 | 23:48:32   | 35.931     | 38.248       | 0.43      | 56.805       | 51.3287  | 54.6366      |
| 13     | 14/04/01 00:05      | 14/04/01 23:55      | Qa 38.3300 | 23:48:38   | 35.908     | 38.255       | 0.41      | 57.1934      | 51.2987  | 54.6516      |
| 14     | 14/04/02 00:05      | 14/04/02 23:55      | Qa 38.3300 | 23:48:29   | 35.973     | 38.248       | 0.47      | 57.0514      | 51.3859  | 54.6359      |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        | 15.51                            | 101.79                         |
| 2        | 15.89                            | 101.73                         |
| 3        | 15.93                            | 101.5                          |
| 4        | 16.45                            | 101.05                         |
| 5        | 15.27                            | 101.14                         |
| 6        | 15.28                            | 100.9                          |
| 7        | 15.34                            | 100.57                         |
| 8        | 15.35                            | 100.47                         |
| 9        | 15.31                            | 101.11                         |
| 10       | 15.22                            | 101.37                         |
| 11       | 16.27                            | 101.15                         |
| 12       | 16.87                            | 101.1                          |
| 13       | 17.55                            | 101.25                         |
| 14       | 16.83                            | 101.2                          |



# Birżebbuġa – PM<sub>2.5</sub> Sampler Report 16

| Sample<br># | Effective start<br>(yy/mm/dd hh.mm wd) | Effective stop<br>(yy/mm/dd hh.mm wd) | Programmed<br>flow rate<br>(I/min) | Elapsed<br>time<br>(hh.mm.ss) | Average<br>flow rate<br>Qs (I/min) | Average<br>flow rate Qa<br>(I/min) | Deviation<br>flow rate<br>(%) |         | Standard<br>volume<br>(m^3) | Actual<br>volume (m^3) |
|-------------|----------------------------------------|---------------------------------------|------------------------------------|-------------------------------|------------------------------------|------------------------------------|-------------------------------|---------|-----------------------------|------------------------|
| 1           | 14/03/20 00:05                         | 14/03/20 23:55                        | Qa 38.3300                         | 23:42:43                      | 36.2                               | 38.221                             | 0.73                          | 56.7171 | 51.5016                     | 54.377                 |
| 2           | 14/03/21 00:05                         | 14/03/21 23:55                        | Qa 38.3300                         | 23:48:36                      | 36.124                             | 38.233                             | 0.71                          | 57.1045 | 51.6068                     | 54.6209                |
| 3           | 14/03/22 00:05                         | 14/03/22 23:55                        | Qa 38.3300                         | 23:48:33                      | 36.043                             | 38.241                             | 0.71                          | 57.2727 | 51.4883                     | 54.628                 |
| 4           | 14/03/23 00:05                         | 14/03/23 23:55                        | Qa 38.3300                         | 23:48:36                      | 35.836                             | 38.241                             | 0.65                          | 57.1877 | 51.1956                     | 54.6314                |
| 5           | 14/03/24 00:05                         | 14/03/24 23:55                        | Qa 38.3300                         | 23:48:32                      | 36.119                             | 38.238                             | 0.7                           | 57.1899 | 51.5959                     | 54.6232                |
| 6           | 14/03/25 00:05                         | 14/03/25 23:55                        | Qa 38.3300                         | 23:41:52                      | 36.016                             | 38.246                             | 0.62                          | 56.8671 | 51.2094                     | 54.3786                |
| 7           | 14/03/26 00:05                         | 14/03/26 23:55                        | Qa 38.3300                         | 23:48:30                      | 35.854                             | 38.247                             | 0.65                          | 57.2273 | 51.2171                     | 54.6356                |
| 8           | 14/03/27 00:05                         | 14/03/27 23:55                        | Qa 38.3300                         | 23:48:29                      | 35.855                             | 38.224                             | 0.78                          | 56.9547 | 51.2179                     | 54.6024                |
| 9           | 14/03/28 00:05                         | 14/03/28 23:55                        | Qa 38.3300                         | 23:48:32                      | 36.12                              | 38.25                              | 0.62                          | 57.1309 | 51.5995                     | 54.6416                |
| 10          | 14/03/29 00:05                         | 14/03/29 23:55                        | Qa 38.3300                         | 23:48:36                      | 36.149                             | 38.24                              | 0.66                          | 57.32   | 51.6432                     | 54.6304                |
| 11          | 14/03/30 00:05                         | 14/03/30 23:55                        | Qa 38.3300                         | 23:48:39                      | 35.932                             | 38.237                             | 0.67                          | 56.8946 | 51.3344                     | 54.6269                |
| 12          | 14/03/31 00:05                         | 14/03/31 23:55                        | Qa 38.3300                         | 23:48:37                      | 35.838                             | 38.24                              | 0.66                          | 57.0551 | 51.1986                     | 54.6296                |
| 13          | 14/04/01 00:05                         | 14/04/01 23:55                        | Qa 38.3300                         | 23:48:35                      | 35.95                              | 38.246                             | 0.64                          | 57.2847 | 51.3574                     | 54.6371                |
| 14          | 14/04/02 00:05                         | 14/04/02 23:55                        | Qa 38.3300                         | 23:48:31                      | 35.899                             | 38.241                             | 0.68                          | 57.3524 | 51.2816                     | 54.6276                |



| Sample # | Average ambient temperature (°C) | Average ambient pressure (kPa) |
|----------|----------------------------------|--------------------------------|
| 1        | 16.23                            | 101.7                          |
| 2        | 16.85                            | 101.67                         |
| 3        | 16.84                            | 101.42                         |
| 4        | 17.28                            | 100.99                         |
| 5        | 15.24                            | 101.08                         |
| 6        | 15.4                             | 100.83                         |
| 7        | 15.8                             | 100.51                         |
| 8        | 15.39                            | 100.43                         |
| 9        | 15.26                            | 101.06                         |
| 10       | 15.67                            | 101.31                         |
| 11       | 16.7                             | 101.07                         |
| 12       | 17.57                            | 101.1                          |
| 13       | 17.37                            | 101.33                         |
| 14       | 17.49                            | 101.24                         |



# ANNEX C – METEOROLOGICAL DATA



|                   | Air Temperature | erature Humidity Precipitation |       | Wind Speed | Wind<br>Direction |
|-------------------|-----------------|--------------------------------|-------|------------|-------------------|
|                   | °c              | %                              | mm    | kt         | 0                 |
|                   | [Average]       | [Average]                      | [Sum] | [Average]  | [Average]         |
| Wed. 4 Sept 2013  | 25.8            | 71.2                           | 0     | 7.3        | 82.5              |
| Thu. 5 Sept 2013  | 24.3            | 78.6                           | 18.4  | 7.4        | 104.2             |
| Fri. 6 Sept 2013  | 25.2            | 80.8                           | 0     | 3.5        | 182.3             |
| Sat. 7 Sept 2013  | 25              | 71.7                           | 0     | 3.1        | 189.7             |
| Sun. 8 Sept 2013  | 25.4            | 75.5                           | 0     | 3.2        | 201.1             |
| Mon. 9 Sept 2013  | 25.8            | 73.1                           | 0     | 3.9        | 244.8             |
| Tue. 10 Sept 2013 | 25.7            | 74.8                           | 0     | 4.4        | 242               |
| Wed. 11 Sept 2013 | 26.2            | 73.5                           | 0     | 4.2        | 206.9             |



|                   | Air Temperature | Humidity  | Precipitation | Wind<br>Speed | Wind Direction |
|-------------------|-----------------|-----------|---------------|---------------|----------------|
|                   | °C              | %         | mm            | kt            | 0              |
|                   | [Average]       | [Average] | [Sum]         | [Average]     | [Average]      |
| Thu. 12 Sept 2013 | 25.9            | 72.6      | 0             | 4.4           | 238.5          |
| Fri. 13 Sept 2013 | 25              | 59.6      | 0             | 8.2           | 300.6          |
| Sat. 14 Sept 2013 | 24.1            | 62        | 0             | 5.3           | 273.3          |
| Sun. 15 Sept 2013 | 25.3            | 74.1      | 0             | 4.7           | 222.6          |
| Mon. 16 Sept 2013 | 25.5            | 70.6      | 1.6           | 8.6           | 234.8          |
| Tue. 17 Sept 2013 | 25.2            | 66.7      | 0             | 8.1           | 295.8          |
| Wed. 18 Sept 2013 | 24.2            | 63.5      | 0             | 9.1           | 301.9          |
| Thu. 19 Sept 2013 | 24.2            | 65.8      | 0             | 5.7           | 286            |
| Fri. 20 Sept 2013 | 24.2            | 65.5      | 0             | 6.2           | 299            |
| Sat. 21 Sept 2013 | 23.5            | 66.1      | 0             | 4.9           | 247.4          |
| Sun. 22 Sept 2013 | 23.2            | 69.6      | 2.6           | 5.6           | 126.5          |
| Mon. 23 Sept 2013 | 22.2            | 67.7      | 0             | 3.6           | 172.4          |
| Tue. 24 Sept 2013 | 23.4            | 60.6      | 0             | 3             | 200            |
| Wed. 25 Sept 2013 | 24.2            | 60.6      | 0             | 4.2           | 225            |



|                   | Air Temperature | Humidity  | Precipitation | Wind<br>Speed | Wind Direction |
|-------------------|-----------------|-----------|---------------|---------------|----------------|
|                   | °C              | %         | тт            | kt            | 0              |
|                   | [Average]       | [Average] | [Sum]         | [Average]     | [Average]      |
| Thu. 26 Sept 2013 | 25              | 77.4      | 0             | 4             | 180.5          |
| Fri. 27 Sept 2013 | 24.9            | 76.5      | 0             | 4.1           | 253.7          |
| Sat. 28 Sept 2013 | 23.9            | 78.9      | 0             | 4.3           | 181.7          |
| Sun. 29 Sept 2013 | 25.8            | 82.5      | 0             | 7             | 159.4          |
| Mon. 30 Sept 2013 | 25.4            | 70.6      | 0             | 7.7           | 295.7          |
| Tue. 01 Oct 2013  | 24.9            | 64.8      | 0             | 10            | 297.3          |
| Wed. 02 Oct 2013  | 24.2            | 71.1      | 0             | 5.3           | 273.3          |



|                  | Air Temperature | Humidity  | Precipitation | Wind<br>Speed | Wind Direction |
|------------------|-----------------|-----------|---------------|---------------|----------------|
|                  | °C              | %         | mm            | kt            | 0              |
|                  | [Average]       | [Average] | [Sum]         | [Average]     | [Average]      |
| Thu. 3 Oct 2013  | 23.7            | 75.1      | 0             | 7.2           | 138.9          |
| Fri. 4 Oct 2013  | 23.6            | 71        | 0             | 8.4           | 110.7          |
| Sat. 5 Oct 2013  | 23.7            | 68.1      | 0             | 7.6           | 144.8          |
| Sun. 6 Oct 2013  | 24.1            | 75.5      | 2.8           | 5.3           | 197.7          |
| Mon. 7 Oct 2013  | 24.1            | 70.6      | 0             | 3.8           | 241.7          |
| Tue. 8 Oct 2013  | 21.5            | 78.5      | 9.4           | 3.3           | 220.4          |
| Wed. 9 Oct 2013  | 22.8            | 77.3      | 0             | 3.7           | 174.5          |
| Thu. 10 Oct 2013 | 24              | 80.6      | 0             | 4             | 179            |
| Fri. 11 Oct 2013 | 24.9            | 84.7      | 0.2           | 3.7           | 200.6          |
| Sat. 12 Oct 2013 | 25.8            | 79.5      | 0             | 5             | 171.9          |
| Sun. 13 Oct 2013 | 25.3            | 80.9      | 0             | 4.3           | 202.6          |
| Mon. 14 Oct 2013 | 24.6            | 81.5      | 0.2           | 3.4           | 200.8          |
| Tue. 15 Oct 2013 | 24.4            | 82.9      | 0.2           | 3.9           | 227.2          |
| Wed. 16 Oct 2013 | 24.6            | 69.4      | 0             | 12.3          | 286.9          |



|                  | Air Temperature | Humidity  | Precipitation | Wind<br>Speed | Wind Direction |
|------------------|-----------------|-----------|---------------|---------------|----------------|
|                  | °C              | %         | mm            | kt            | 0              |
|                  | [Average]       | [Average] | [Sum]         | [Average]     | [Average]      |
| Thu, 17 Oct 2013 | 23.6            | 65.4      | 0             | 9             | 308.6          |
| Fri. 18 Oct 2013 | 22.3            | 70.2      | 0             | 2.7           | 182.2          |
| Sat. 19 Oct 2013 | 23.3            | 69.1      | 0             | 5.2           | 127.8          |
| Sun. 20 Oct 2013 | 23.5            | 65.5      | 0             | 7.5           | 116.4          |
| Mon. 21Oct 2013  | 23              | 70        | 0.6           | 6.5           | 120.9          |
| Tue. 22 Oct 2013 | 21.9            | 68.3      | 0             | 3.4           | 157.5          |
| Wed. 23 Oct 2013 | 22              | 66.7      | 0             | 4.1           | 153.7          |
| Thu. 24 Oct 2013 | 21.7            | 72.5      | 0             | 3.3           | 176.2          |
| Fri. 25 Oct 2013 | 23.2            | 63.3      | 0             | 4.4           | 193.1          |
| Sat. 26 Oct 2013 | 21.8            | 70.4      | 0             | 3             | 163.4          |
| Sun. 27 Oct 2013 | 21.1            | 67.8      | 0             | 3.1           | 199.8          |
| Mon.28 Oct 2013  | 21.9            | 69.7      | 0             | 4.9           | 265.8          |
| Tue. 29 Oct 2013 | 21.8            | 64.9      | 0             | 3.7           | 217.8          |
| Wed. 30 Oct 2013 | 23              | 67.4      | 0             | 6.3           | 147.3          |



|                      | Air Temperature | Humidity  | Precipitation | Wind<br>Speed | Wind Direction |
|----------------------|-----------------|-----------|---------------|---------------|----------------|
|                      | °C              | %         | mm            | kt            | 0              |
|                      | [Average]       | [Average] | [Sum]         | [Average]     | [Average]      |
| Thu, 31 Oct 2013     | 22.4            | 71.2      | 0.8           | 7.6           | 146.9          |
| Fri. 01 Nov 2013     | 21.1            | 69.8      | 7.4           | 5.8           | 179.0          |
| Sat. 02 Nov 2013     | 20.1            | 71.8      | 3.2           | 3.3           | 217.9          |
| Sun. 03 Nov Oct 2013 | 20.1            | 75.8      | 3.8           | 3.0           | 242.5          |
| Mon. 04 Nov 2013     | 22.5            | 63.2      | 0.0           | 7.5           | 221.3          |
| Tue. 05 Nov 2013     | 19.4            | 69.1      | 21.2          | 11.1          | 264.1          |
| Wed. 06 Nov 2013     | 20.7            | 62.3      | 0.2           | 10.5          | 308.5          |
| Thu. 07 Nov 2013     | 20.5            | 66.1      | 0.0           | 3.9           | 225.1          |
| Fri. 08 Nov 2013     | 20.9            | 73.7      | 0.0           | 3.1           | 225.0          |
| Sat. 09 Nov 2013     | 21.9            | 75.4      | 0.0           | 3.8           | 229.0          |
| Sun. 10 Nov 2013     | 20.5            | 72.7      | 1.4           | 6.2           | 290.2          |
| Mon. 11 Nov 2013     | 17.5            | 66.2      | 15.4          | 10.0          | 275.8          |
| Tue. 12 Nov 2013     | 16.7            | 69.5      | 5.0           | 5.8           | 206.8          |
| Wed. 13 Nov 2013     | 16.4            | 72.2      | 1.0           | 3.7           | 221.4          |



|                  | Air Temperature | Humidity  | Precipitation | Wind<br>Speed | Wind Direction |
|------------------|-----------------|-----------|---------------|---------------|----------------|
|                  | °C              | %         | mm            | kt            | 0              |
|                  | [Average]       | [Average] | [Sum]         | [Average]     | [Average]      |
| Thu. 14 Nov 2013 | 17.4            | 70.2      | 0.0           | 2.9           | 238.9          |
| Fri. 15 Nov 2013 | 18.4            | 71.8      | 1.0           | 3.6           | 236.1          |
| Sat. 16 Nov 2013 | 18.4            | 68.5      | 0.0           | 4.4           | 281.7          |
| Sun. 17 Nov 2013 | 18.4            | 67.1      | 0.0           | 3.5           | 158.4          |
| Mon. 18 Nov 2013 | 20.7            | 71.1      | 0.0           | 13.2          | 136.1          |
| Tue. 19 Nov 2013 | 19.9            | 51.5      | 0.0           | 12.5          | 235.3          |
| Wed. 20 Nov 2013 | 19.4            | 51.7      | 0.0           | 10.0          | 240.0          |
| Thu. 21 Nov 2013 | 17.7            | 58.3      | 0.0           | 7.5           | 274.3          |
| Fri. 22 Nov 2013 | 17.7            | 51.3      | 0.0           | 10.1          | 236.9          |
| Sat. 23 Nov 2013 | 16.0            | 58.5      | 1.0           | 7.6           | 265.0          |
| Sun. 24 Nov 2013 | 15.2            | 56.4      | 8.4           | 9.7           | 266.7          |
| Mon. 25 Nov 2013 | 14.0            | 72.1      | 14.0          | 5.7           | 279.7          |
| Tue. 26 Nov 2013 | 12.6            | 56.7      | 1.2           | 9.5           | 303.1          |
| Wed. 27 Nov 2013 | 12.1            | 59.7      | 0.0           | 4.8           | 297.4          |



|                  | Air Temperature | Humidity  | Precipitation | Wind<br>Speed | Wind Direction |
|------------------|-----------------|-----------|---------------|---------------|----------------|
|                  | °C              | %         | mm            | kt            | 0              |
|                  | [Average]       | [Average] | [Sum]         | [Average]     | [Average]      |
| Thu. 28 Nov 2013 | 14.3            | 72.1      | 27.2          | 4.7           | 144.0          |
| Fri. 29 Nov 2013 |                 |           |               |               |                |
| Sat. 30 Nov 2013 |                 |           |               |               |                |
| Sun. 01 Dec 2013 | 15.7            | 78.1      | 19.8          | 10.2          | 236.6          |
| Mon. 02 Dec 2013 | 14.8            | 66.2      | 15.4          | 6.4           | 236.8          |
| Tue. 03 Dec 2013 | 12.5            | 78        | 6             | 3.7           | 268.6          |
| Wed. 04 Dec 2013 | 15.2            | 65.7      | 0             | 6.8           | 78.8           |
| Thu. 05 Dec 2013 | 14              | 66.8      | 0             | 3.5           | 257.8          |
| Fri. 06 Dec 2013 | 14.7            | 66.7      | 0             | 6.7           | 289.1          |
| Sat. 07 Dec 2013 | 15.5            | 67.1      | 0             | 5.2           | 236.5          |
| Sun. 08 Dec 2013 | 15.9            | 63        | 0             | 7.7           | 95.5           |
| Mon. 09 Dec 2013 | 16.1            | 63.8      | 0             | 5             | 132.2          |
| Tue. 10 Dec 2013 | 16              | 73.7      | 0             | 2.5           | 218.7          |
| Wed. 11 Dec 2013 | 15.5            | 62.8      | 0             | 6.8           | 94.4           |



|                  | Air Temperature | Humidity  | Precipitation | Wind<br>Speed | Wind Direction |
|------------------|-----------------|-----------|---------------|---------------|----------------|
|                  | °C              | %         | mm            | kt            | 0              |
|                  | [Average]       | [Average] | [Sum]         | [Average]     | [Average]      |
| Thu. 12 Dec 2013 | 13.7            | 74        | 0             | 3.5           | 266.5          |
| Fri. 13 Dec 2013 | 13.8            | 74.6      | 0             | 3.9           | 285.6          |
| Sat. 14 Dec 2013 | 14.2            | 73.2      | 0             | 4             | 283.5          |
| Sun. 15 Dec 2013 | 14.3            | 71.6      | 0             | 4.2           | 287.6          |
| Mon. 16 Dec 2013 | 13.9            | 69.1      | 0             | 5             | 181.8          |
| Tue. 17 Dec 2013 | 14.4            | 63        | 0             | 5.9           | 86.8           |
| Wed. 18 Dec 2013 | 13.8            | 60.8      | 0             | 4.8           | 139.1          |
| Thu. 19 Dec 2013 | 13.1            | 64.3      | 0             | 3.3           | 174.4          |
| Fri. 20 Dec 2013 | 15.3            | 60.2      | 0             | 7.7           | 93.1           |
| Sat. 21 Dec 2013 | 16.2            | 76.1      | 0             | 8.1           | 81.7           |
| Sun. 22 Dec 2013 | 15.8            | 72.7      | 0             | 10.6          | 79.5           |



|                   | Air Temperature | Humidity  | Precipitation | Wind<br>Speed | Wind Direction |
|-------------------|-----------------|-----------|---------------|---------------|----------------|
|                   | °C              | %         | тт            | kt            | 0              |
|                   | [Average]       | [Average] | [Sum]         | [Average]     | [Average]      |
| Mon. 23 Dec 2013  | 15.5            | 71.3      | 5.4           | 10.7          | 60.8           |
| Tue. 24 Dec 2013  | 14.9            | 78.6      | 1.4           | 9.8           | 78.9           |
| Wed. 25 Dec 2013  | 15.2            | 72.4      | 0.2           | 5.6           | 241.1          |
| Thu. 26 Dec 2013  | 14.2            | 72.5      | 11.2          | 10.5          | 238.9          |
| Fri. 27 Dec 2013  | 11.1            | 73.6      | 13.8          | 8             | 295.5          |
| Sat. 28 Dec 2013  | 12.9            | 69.3      | 0             | 4.9           | 290.3          |
| Sun. 29 Dec 2013  | 14.2            | 75.1      | 0             | 3.7           | 268.4          |
| Mon. 30 Dec 2013  | 14.6            | 79.9      | 0             | 4.6           | 280.1          |
| Tue. 31 Dec 2013  | 12              | 77.6      | 15.8          | 8.2           | 290.6          |
| Wed. 01 Jan 2013  | 13.6            | 76.6      | 0.0           | 8.1           | 293.4          |
| Thur. 02 Jan 2014 | 13.4            | 74.2      | 0.0           | 3.4           | 271.9          |
| Fri. 03 Jan 2014  | 14.3            | 75.6      | 0.0           | 3.1           | 256.0          |
| Sat. 04 Jan 2014  | 15.0            | 79.6      | 0.0           | 4.4           | 223.8          |
| Sun. 05 Jan 2014  | 14.8            | 73.0      | 0.2           | 8.5           | 243.8          |
| Mon. 06 Jan 2014  | 12.5            | 74.4      | 8.0           | 8.6           | 203.0          |



| Report 11 | Re | ро | rt | 1 | 1 |
|-----------|----|----|----|---|---|
|-----------|----|----|----|---|---|

|                  | Air Temperature | Humidity  | Precipitation | Wind<br>Speed | Wind Direction |
|------------------|-----------------|-----------|---------------|---------------|----------------|
|                  | °C              | %         | mm            | kt            | 0              |
|                  | [Average]       | [Average] | [Sum]         | [Average]     | [Average]      |
| Tue, 7 Jan 2014  | 14.0            | 67.8      | 0.0           | 6.1           | 189.8          |
| Wed, 8 Jan 2014  | 13.1            | 77.1      | 0.0           | 3.2           | 264.3          |
| Thu, 9 Jan 2014  | 13.6            | 77.4      | 0.0           | 3.9           | 260.1          |
| Fri, 10 Jan 2014 | 15.9            | 73.8      | 0.0           | 5.8           | 231.9          |
| Sat, 11 Jan 2014 | 16.0            | 85.0      | 0.0           | 3.8           | 176.0          |
| Sun, 12 Jan 2014 | 15.9            | 89.3      | 0.8           | 2.7           | 190.6          |
| Mon, 13 Jan 2014 | 13.9            | 84.5      | 0.0           | 4.1           | 232.8          |
| Tue, 14 Jan 2014 | 14.3            | 79.8      | 1.0           | 3.2           | 223.2          |
| Wed, 15 Jan 2014 | 12.7            | 82.0      | 20.4          | 3.6           | 258.2          |
| Thu, 16 Jan 2014 | 13.0            | 70.6      | 0.0           | 4.1           | 274.6          |
| Fri, 17 Jan 2014 | 15.3            | 68.1      | 0.0           | 8.8           | 184.6          |
| Sat, 18 Jan 2014 | 17.0            | 77.6      | 0.0           | 10.6          | 162.6          |
| Sun, 19 Jan 2014 | 17.3            | 75.2      | 0.0           | 6.3           | 199.6          |
| Mon, 20 Jan 2014 | 15.9            | 66.1      | 0.0           | 9.9           | 232.1          |
| Tue, 21 Jan 2014 | 13.5            | 58.6      | 0.0           | 10.0          | 273.7          |



|                  | Air Temperature | Humidity  | Precipitation | Wind<br>Speed | Wind Direction |
|------------------|-----------------|-----------|---------------|---------------|----------------|
|                  | °C              | %         | mm            | kt            | 0              |
|                  | [Average]       | [Average] | [Sum]         | [Average]     | [Average]      |
| Wed, 22 Jan 2014 | 14.2            | 61.0      | 0.0           | 6.7           | 246.1          |
| Thu, 23 Jan 2014 | 15.7            | 74.5      | 0.0           | 7.0           | 160.2          |
| Fri, 24 Jan 2014 | 14.2            | 74.4      | 6.2           | 10.8          | 260.0          |
| Sat, 25 Jan 2014 | 12.2            | 69.0      | 11.8          | 14.3          | 287.6          |
| Sun, 26 Jan 2014 | 13.0            | 62.0      | 0.0           | 12.8          | 302.3          |
| Mon, 27 Jan 2014 | 13.6            | 67.0      | 0.4           | 8.5           | 274.2          |
| Tue, 28 Jan 2014 | 12.1            | 71.2      | 2.2           | 8.7           | 292.1          |
| Wed, 29 Jan 2014 | 14.2            | 59.8      | 0.0           | 8.0           | 222.2          |
| Thu, 30 Jan 2014 | 15.7            | 79.6      | 0.0           | 12.1          | 133.2          |
| Fri, 31 Jan 2014 | 16.3            | 83.5      | 0.0           | 7.8           | 146            |
| Sat, 01 Feb 2014 | 13.8            | 87.6      | 40.2          | 6.7           | 173.1          |
| Sun, 02 Feb 2014 | 13.5            | 78.6      | 1.8           | 6.2           | 187.4          |
| Mon, 03 Feb 2014 | 12.5            | 64.6      | 0             | 8.8           | 286.7          |
| Tue, 04 Feb 2014 | 13.9            | 60.7      | 0             | 5.1           | 229            |
| Wed, 05 Feb 2014 | 12.9            | 75.4      | 5.8           | 4.4           | 242.2          |



|                            | Air Temperature | Humidity  | Precipitation | Wind<br>Speed | Wind Direction |
|----------------------------|-----------------|-----------|---------------|---------------|----------------|
|                            | °C              | %         | mm            | kt            | 0              |
|                            | [Average]       | [Average] | [Sum]         | [Average]     | [Average]      |
| Thursday, 06 Feb 2014      | 14.5            | 71.1      | 0             | 8.7           | 278.9          |
| Friday, 07 Feb 2014        | 13.8            | 73.7      | 0             | 4.1           | 194.4          |
| Saturday, 08 Feb 2014      | 13.8            | 77.5      | 0             | 6.3           | 274.6          |
| Sunday, 09 Feb 2014        | 14.4            | 76.1      | 0             | 6.2           | 245.2          |
| Monday, 10 Feb 2014        | 15.3            | 84        | 0             | 5.9           | 173.9          |
| Tuesday, 11 Feb 2014       | 14.1            | 82        | 2.6           | 9.2           | 231.7          |
| Wednesday, 12 Feb 2014     | 12.8            | 68        | 2.6           | 8.7           | 271.3          |
| Thursday, 13 February 2014 | 12.9            | 71        | 0.4           | 8.7           | 297.8          |
| Friday, 14 February 2014   | 15.3            | 78.5      | 0             | 10.5          | 279            |
| Saturday, 15 February 2014 | 14.6            | 83.7      | 0.2           | 3.3           | 202.3          |
| Sunday, 16 February 2014   | 15.7            | 90.1      | 0.2           | 5             | 188.7          |
| Monday, 17 February 2014   | 15.8            | 90.8      | 0.4           | 5.3           | 159.3          |



|                             | Air Temperature | Humidity  | Precipitation | Wind<br>Speed | Wind Direction |
|-----------------------------|-----------------|-----------|---------------|---------------|----------------|
|                             | °C              | %         | mm            | kt            | 0              |
|                             | [Average]       | [Average] | [Sum]         | [Average]     | [Average]      |
| Tuesday, 18 February 2014   | 16              | 85.4      | 0.2           | 7             | 128            |
| Wednesday, 19 February 2014 | 16.3            | 82.4      | 0             | 6.4           | 151            |
| Thursday, 20 Feb 2014       | 15.8            | 85.9      | 0             | 6.6           | 50.3           |
| Friday, 21 Feb 2014         | 14.2            | 73.6      | 1             | 13.1          | 292            |
| Saturday, 22 February 2014  | 14.1            | 80.2      | 0             | 5.9           | 278            |
| Sunday, 23 February 2014    | 13              | 70.7      | 0             | 6.7           | 297.5          |
| Monday, 24 February 2014    | 12.6            | 68.4      | 0             | 5             | 285.1          |
| Tuesday, 25 Feb 2014        | 13.2            | 65.7      | 0             | 4.3           | 162            |
| Wednesday, 26 February 2014 | 14.2            | 70.6      | 0             | 4.3           | 113.2          |
| Thursday, 27 February 2014  | 12.3            | 83.2      | 7.4           | 4             | 141.2          |
| Friday, 28 February 2014    | 12              | 72.9      | 0             | 4.8           | 291.4          |
| Saturday, 01 March 2014     | 12.1            | 64.8      | 0.2           | 7.4           | 260.5          |
| Sunday, 02 March 2014       | 11              | 82.1      | 6.4           | 4.7           | 229.3          |
| Monday, 03 March 2014       | 12.8            | 69.4      | 9             | 9.1           | 274.8          |
| Tuesday, 04 March 2014      | 11.7            | 69.4      | 1.8           | 9.6           | 280.4          |



|                          | Air Temperature | Humidity  | Precipitation | Wind<br>Speed | Wind Direction |
|--------------------------|-----------------|-----------|---------------|---------------|----------------|
|                          | °C              | %         | mm            | kt            | 0              |
|                          | [Average]       | [Average] | [Sum]         | [Average]     | [Average]      |
| Wednesday, 05 March 2014 | 11.7            | 74.1      | 3.4           | 11.5          | 272.2          |
| Thursday, 06 March 2014  | 12              | 72.3      | 0             | 5.1           | 284.9          |
| Friday, 07 March 2014    | 12.5            | 74.2      | 0             | 4.3           | 252.2          |
| Saturday, 08 March 2014  | 12.9            | 73.5      | 0.4           | 9.1           | 129.3          |
| Sunday, 09 March 2014    | 12.7            | 76.5      | 12.4          | 6.7           | 99.5           |
| Monday, 10 March 2014    | 12              | 75.3      | 0             | 4.3           | 159.3          |
| Tuesday, 11 March 2014   | 11.5            | 74.2      | 3.4           | 3             | 238.2          |
| Wednesday, 12 March 2014 | 13              | 72.7      | 0             | 5.2           | 143.3          |
| Thursday, 13 March 2014  | 14.1            | 71.2      | 0             | 10.9          | 86.7           |
| Friday, 14 March 2014    | 15.2            | 75.4      | 0             | 12.7          | 94.4           |
| Saturday, 15 March 2014  | 15              | 80.3      | 0             | 8.2           | 67.8           |
| Sunday, 16 March 2014    | 14.2            | 77.8      | 0             | 6.4           | 301.2          |
| Monday, 17 March 2014    | 14.6            | 80.1      | 0             | 4.6           | 283.8          |
| Tuesday, 18 March 2014   | 15.8            | 75.3      | 0             | 3.8           | 240.3          |
| Wednesday, 19 March 2014 | 14.7            | 82.1      | 0.2           | 4.3           | 233.3          |



|                          | Air Temperature | Humidity  | Precipitation | Wind<br>Speed | Wind Direction |
|--------------------------|-----------------|-----------|---------------|---------------|----------------|
|                          | °C              | %         | mm            | kt            | 0              |
|                          | [Average]       | [Average] | [Sum]         | [Average]     | [Average]      |
| Thursday, 20 March 2014  | 14.9            | 83.4      | 0.2           | 4.6           | 110.6          |
| Friday, 21 March 2014    | 15              | 79.9      | 0             | 5.9           | 78.7           |
| Saturday, 22 March 2014  | 14.8            | 82.4      | 0             | 4.3           | 137.7          |
| Sunday, 23 March 2014    | 15.3            | 85.2      | 0             | 5.7           | 172.1          |
| Monday, 24 March 2014    | 13.7            | 62.1      | 0             | 9.8           | 294.7          |
| Tuesday, 25 March 2014   | 14.4            | 70.9      | 0             | 8             | 252.3          |
| Wednesday, 26 March 2014 | 14.6            | 75.2      | 0             | 8.2           | 196.5          |
| Thursday, 27 March 2014  | 14.2            | 64.4      | 0             | 10.5          | 257.5          |
| Friday, 28 March 2014    | 13.9            | 70.2      | 0             | 8.5           | 281.6          |
| Saturday, 29 March 2014  | 14.4            | 74.6      | 0             | 6.9           | 135            |
| Sunday, 30 March 2014    | 15.7            | 74.1      | 0             | 10.1          | 89.6           |
| Monday, 31 March 2014    | 15.6            | 70.1      | 0             | 6.8           | 157.2          |
| Tuesday, 01 April 2014   |                 |           |               |               |                |
| Wednesday, 02 April 2014 |                 |           |               |               |                |



# ANNEX D – MONTHLY REPORTS SCHEDULE S4.5 OF THE IPPC PERMIT **IP0002/07/D**



| Sampling location:                                                                   |          | Marsaxlokk                            |                                        |  |
|--------------------------------------------------------------------------------------|----------|---------------------------------------|----------------------------------------|--|
| Day                                                                                  | Date     | PM <sub>10</sub> (μg/m <sup>3</sup> ) | PM <sub>2.5</sub> (μg/m <sup>3</sup> ) |  |
| Wednesday                                                                            | 13/09/04 | NA <sup>26</sup>                      | NA                                     |  |
| Thursday                                                                             | 13/09/05 | 18.87                                 | 6.24                                   |  |
| Friday                                                                               | 13/09/06 | 37.91                                 | NA                                     |  |
| Saturday                                                                             | 13/09/07 | 34.62                                 | NA                                     |  |
| Sunday                                                                               | 13/09/08 | 37.18                                 | NA                                     |  |
| Monday                                                                               | 13/09/09 | NA                                    | NA                                     |  |
| Tuesday                                                                              | 13/09/10 | 20.88                                 | 13.57                                  |  |
| Wednesday                                                                            | 13/09/11 | 19.60                                 | 11.55                                  |  |
| Average during reporting period                                                      |          | 28.18                                 | 10.45                                  |  |
| Average during calendar year (to date)                                               |          | 28.18                                 | 10.45                                  |  |
| Number of exceedances of daily limit value registered during calendar year (to date) |          | 0                                     | 0                                      |  |

Note: in the table above underline measurements which exceed the daily limit value of 50  $\mu$ g/m<sup>3</sup> for PM10. in accordance with LN 478/2010. PM2.5 values were not adjusted for Saharan dust contribution because of no data available from Għarb station.

| Name of laboratory carrying out sampling and measurement | AMBIENTE |
|----------------------------------------------------------|----------|
|                                                          |          |

Additional documentation to be submitted (if not identical to the submission in the previous month):

Accreditation certificate(s) of laboratory: ACCREDIA 510

 $^{26}$  Not available due to power interruption. Same reason applicable to the rest of the NA data



| Sampling location:              |                                                          | Birżebbuġa                            | Birżebbuġa                             |  |
|---------------------------------|----------------------------------------------------------|---------------------------------------|----------------------------------------|--|
| Day                             | Date                                                     | PM <sub>10</sub> (μg/m <sup>3</sup> ) | PM <sub>2.5</sub> (μg/m <sup>3</sup> ) |  |
| Wednesday                       | 13/09/04                                                 | 38.09                                 | 12.08                                  |  |
| Thursday                        | 13/09/05                                                 | 28.76                                 | 9.34                                   |  |
| Friday                          | 13/09/06                                                 | 44.33                                 | 13.00                                  |  |
| Saturday                        | 13/09/07                                                 | 34.07                                 | 13.18                                  |  |
| Sunday                          | 13/09/08                                                 | 34.25                                 | 17.94                                  |  |
| Monday                          | 13/09/09                                                 | 33.88                                 | 1.83                                   |  |
| Tuesday                         | 13/09/10                                                 | 23.07                                 | 13.18                                  |  |
| Wednesday                       | 13/09/11                                                 | 21.24                                 | 10.98                                  |  |
| Average during reporting period |                                                          | 32.21                                 | 11.44                                  |  |
| Average during ca               | lendar year (to date)                                    | 32.21                                 | 11.44                                  |  |
|                                 | ceedances of daily limit valu<br>calendar year (to date) | <sup>Je</sup> 0                       | 0                                      |  |

Note: in the table above underline measurements which exceed the daily limit value of 50  $\mu$ g/m<sup>3</sup> for PM10. in accordance with LN 478/2010. PM2.5 values were not adjusted for Saharan dust contribution because of no data available from Gharb station.

| Name of laboratory carrying out sampling and measurement | AMBIENTE |
|----------------------------------------------------------|----------|
|                                                          |          |

Additional documentation to be submitted (if not identical to the submission in the previous month):



| Sampling location:                     |                                                      | Marsaxlokk                            | Marsaxlokk                             |  |
|----------------------------------------|------------------------------------------------------|---------------------------------------|----------------------------------------|--|
| Day                                    | Date                                                 | PM <sub>10</sub> (μg/m <sup>3</sup> ) | PM <sub>2.5</sub> (μg/m <sup>3</sup> ) |  |
| Thursday                               | 13/09/12                                             |                                       |                                        |  |
| Friday                                 | 13/09/13                                             | 33.70                                 | 14.49                                  |  |
| Saturday                               | 13/09/14                                             | 32.78                                 | 12.10                                  |  |
| Sunday                                 | 13/09/15                                             | 34.44                                 | 17.24                                  |  |
| Monday                                 | 13/09/16                                             | 32.79                                 | 15.96                                  |  |
| Tuesday                                | 13/09/17                                             | 37.00                                 |                                        |  |
| Wednesday                              | 13/09/18                                             | 35.53                                 |                                        |  |
| Thursday                               | 13/09/19                                             | 35.17                                 |                                        |  |
| Friday                                 | 13/09/20                                             | 33.52                                 |                                        |  |
| Saturday                               | 13/09/21                                             | 36.81                                 |                                        |  |
| Sunday                                 | 13/09/22                                             | 45.23                                 |                                        |  |
| Monday                                 | 13/09/23                                             | 28.94                                 |                                        |  |
| Tuesday                                | 13/09/24                                             | 35.90                                 |                                        |  |
| Wednesday                              | 13/09/25                                             | 37.34                                 |                                        |  |
| Average during reporting period        |                                                      | 35.32                                 | 14.95                                  |  |
| Average during calendar year (to date) |                                                      | 33.06                                 | 13.02                                  |  |
|                                        | cceedances of daily limit<br>calendar year (to date) | value 0                               | 0                                      |  |

Note: in the table above underline measurements which exceed the daily limit value of  $50 \mu g/m^3$  for PM10. in accordance with LN 478/2010. PM2.5 values were not adjusted for Saharan dust contribution because of no data available from Għarb station.

| Name of laboratory carrying out sampling and measurement | AMBIENTE |
|----------------------------------------------------------|----------|
|                                                          |          |

Additional documentation to be submitted (if not identical to the submission in the previous month):



| Sampling location:                                                                   |          | Birżebbuġa                            |                                        |
|--------------------------------------------------------------------------------------|----------|---------------------------------------|----------------------------------------|
| Day                                                                                  | Date     | PM <sub>10</sub> (μg/m <sup>3</sup> ) | PM <sub>2.5</sub> (μg/m <sup>3</sup> ) |
| Thursday                                                                             | 13/09/12 |                                       |                                        |
| Friday                                                                               | 13/09/13 | 30.03                                 | 12.99                                  |
| Saturday                                                                             | 13/09/14 |                                       | 16.47                                  |
| Sunday                                                                               | 13/09/15 |                                       | 13.91                                  |
| Monday                                                                               | 13/09/16 |                                       | 14.28                                  |
| Tuesday                                                                              | 13/09/17 |                                       | 17.02                                  |
| Wednesday                                                                            | 13/09/18 |                                       | 15.01                                  |
| Thursday                                                                             | 13/09/19 |                                       | 15.74                                  |
| Friday                                                                               | 13/09/20 |                                       | 13.36                                  |
| Saturday                                                                             | 13/09/21 |                                       | 15.93                                  |
| Sunday                                                                               | 13/09/22 |                                       | 16.29                                  |
| Monday                                                                               | 13/09/23 |                                       | 15.74                                  |
| Tuesday                                                                              | 13/09/24 |                                       | 19.95                                  |
| Wednesday                                                                            | 13/09/25 |                                       | 19.03                                  |
| Average during reporting period                                                      |          | 30.03                                 | 15.83                                  |
| Average during calendar year (to date)                                               |          | 31.97                                 | 14.16                                  |
| Number of exceedances of daily limit value registered during calendar year (to date) |          | <sup>2</sup> 0                        | 0                                      |

Note: in the table above underline measurements which exceed the daily limit value of  $50 \mu g/m^3$  for PM10. in accordance with LN 478/2010. PM2.5 values were not adjusted for Saharan dust contribution because of no data available from Għarb station.

| Name of laboratory carrying out sampling and measurement | AMBIENTE |
|----------------------------------------------------------|----------|
|                                                          |          |

Additional documentation to be submitted (if not identical to the submission in the previous month):



| Sampling location:                                                                   |          | Marsaxlokk                            |                                        |
|--------------------------------------------------------------------------------------|----------|---------------------------------------|----------------------------------------|
| Day                                                                                  | Date     | PM <sub>10</sub> (μg/m <sup>3</sup> ) | PM <sub>2.5</sub> (μg/m <sup>3</sup> ) |
| Thursday                                                                             | 13/09/26 | NV                                    | NV                                     |
| Friday                                                                               | 13/09/27 | 47.44                                 | N.V                                    |
| Saturday                                                                             | 13/09/28 | 40.49                                 | 17.60                                  |
| Sunday                                                                               | 13/09/29 | 53.50                                 | 16.69                                  |
| Monday                                                                               | 13/09/30 | 61.36                                 | 17.61                                  |
| Tuesday                                                                              | 13/10/01 | 44.51                                 | 16.33                                  |
| Wednesday                                                                            | 13/10/02 | 42.67                                 | 14.86                                  |
| Average during reporting period                                                      |          | 48.3                                  | 16.62                                  |
| Average during calendar year (to date)                                               |          | 36.73                                 | 14.52                                  |
| Number of exceedances of daily limit value registered during calendar year (to date) |          | 2                                     | 0                                      |

Note: in the table above underline measurements which exceed the daily limit value of  $50 \ \mu g/m^3$  for PM10. in accordance with LN 478/2010. PM2.5 values were not adjusted for Saharan dust contribution because of no data available from Gharb station.

| Name of laboratory carrying out sampling and measurement | AMBIENTE |
|----------------------------------------------------------|----------|
|----------------------------------------------------------|----------|

Additional documentation to be submitted (if not identical to the submission in the previous month):

Accreditation certificate(s) of laboratory: ACCREDIA 510



| Sampling location:                                                                   |          | Birżebbuġa                            |                                        |
|--------------------------------------------------------------------------------------|----------|---------------------------------------|----------------------------------------|
| Day                                                                                  | Date     | PM <sub>10</sub> (μg/m <sup>3</sup> ) | PM <sub>2.5</sub> (μg/m <sup>3</sup> ) |
| Thursday                                                                             | 13/09/26 | N.V                                   | N.V                                    |
| Friday                                                                               | 13/09/27 | N.V                                   | N.V                                    |
| Saturday                                                                             | 13/09/28 | N.V                                   | 17.77                                  |
| Sunday                                                                               | 13/09/29 | N.V                                   | 20.88                                  |
| Monday                                                                               | 13/09/30 | N.V                                   | 15.57                                  |
| Tuesday                                                                              | 13/10/01 | N.V                                   | 10.26                                  |
| Wednesday                                                                            | 13/10/02 | N.V                                   | 15.20                                  |
| Average during reporting period                                                      |          |                                       | 15.94                                  |
| Average during calendar year (to date)                                               |          | 31.97                                 | 14.50                                  |
| Number of exceedances of daily limit value registered during calendar year (to date) |          | 0                                     | 0                                      |

Note: in the table above underline measurements which exceed the daily limit value of 50 μg/m<sup>3</sup> for PM10. in accordance with LN 478/2010. PM2.5 values were not adjusted for Saharan dust contribution because of no data available from Gharb station.

| Name of laboratory carrying out sampling and measurement | AMBIENTE |
|----------------------------------------------------------|----------|
|----------------------------------------------------------|----------|

Additional documentation to be submitted (if not identical to the submission in the previous month):



| Sampling location:                     |                                                     | Marsaxlokk                            | Marsaxlokk                             |  |
|----------------------------------------|-----------------------------------------------------|---------------------------------------|----------------------------------------|--|
| Day                                    | Date                                                | ΡΜ <sub>10</sub> (μg/m <sup>3</sup> ) | PM <sub>2.5</sub> (μg/m <sup>3</sup> ) |  |
| Thursday                               | 13/10/03                                            | 33.15                                 | 12.28                                  |  |
| Friday                                 | 13/10/04                                            | 25.63                                 | 13.75                                  |  |
| Saturday                               | 13//05                                              | 18.13                                 | 8.98                                   |  |
| Sunday                                 | 13/10/06                                            | 21.43                                 | 9.72                                   |  |
| Monday                                 | 13/10/07                                            | 34.61                                 | 13.39                                  |  |
| Tuesday                                | 13/10/08                                            | 25.63                                 | 11.92                                  |  |
| Wednesday                              | 13/10/09                                            | 27.29                                 | 11.56                                  |  |
| Thursday                               | 13/10/10                                            | 56.58                                 | 12.93                                  |  |
| Friday                                 | 13/10/11                                            | N.V                                   | N.V                                    |  |
| Saturday                               | 13/10/12                                            | N.V                                   | N.V                                    |  |
| Sunday                                 | 13/10/13                                            | 42.84                                 | N.V                                    |  |
| Monday                                 | 13/10/14                                            | 38.09                                 | N.V                                    |  |
| Tuesday                                | 13/10/15                                            | N.V                                   | N.V                                    |  |
| Wednesday                              | 13/10/16                                            | 52.38                                 | N.V                                    |  |
| Average during reporting period        |                                                     | 34.16                                 | 11.82                                  |  |
| Average during calendar year (to date) |                                                     | 35.94                                 | 13.44                                  |  |
|                                        | ceedances of daily limit<br>calendar year (to date) | value 4                               | 0                                      |  |

Note: in the table above underline measurements which exceed the daily limit value of 50 μg/m<sup>3</sup> for PM10. in accordance with LN 478/2010. PM2.5 values were not adjusted for Saharan dust contribution because of no data available from Gharb station.

| Name of laboratory carrying out sampling and measurement | AMBIENTE |
|----------------------------------------------------------|----------|
|                                                          |          |

Additional documentation to be submitted (if not identical to the submission in the previous month):



| Sampling location:                                                                   |          | Birżebbuġa                            |                                        |
|--------------------------------------------------------------------------------------|----------|---------------------------------------|----------------------------------------|
| Day                                                                                  | Date     | PM <sub>10</sub> (μg/m <sup>3</sup> ) | PM <sub>2.5</sub> (μg/m <sup>3</sup> ) |
| Thursday                                                                             | 13/10/03 | N.V.                                  | N.V                                    |
| Friday                                                                               | 13/10/04 | N.V.                                  | 11.35                                  |
| Saturday                                                                             | 13/10/05 | N.V.                                  | 11.72                                  |
| Sunday                                                                               | 13/10/06 | N.V.                                  | 7.87                                   |
| Monday                                                                               | 13/10/07 | N.V.                                  | 2.01                                   |
| Tuesday                                                                              | 13/10/08 | N.V.                                  | 8.07                                   |
| Wednesday                                                                            | 13/10/09 | N.V.                                  | 8.61                                   |
| Thursday                                                                             | 13/10/10 | N.V.                                  | 9.89                                   |
| Friday                                                                               | 13/10/11 | N.V.                                  | 16.73                                  |
| Saturday                                                                             | 13/10/12 | N.V.                                  | 12.45                                  |
| Sunday                                                                               | 13/10/13 | N.V.                                  | 8.87                                   |
| Monday                                                                               | 13/10/14 | N.V.                                  | 1.83                                   |
| Tuesday                                                                              | 13/10/15 | N.V.                                  | 13.76                                  |
| Wednesday                                                                            | 13/10/16 | N.V.                                  | 14.46                                  |
| Average during reporting period                                                      |          |                                       | 9.82                                   |
| Average during calendar year (to date)                                               |          | 31.97                                 | 12.94                                  |
| Number of exceedances of daily limit value registered during calendar year (to date) |          | 0                                     | 0                                      |

Note: in the table above underline measurements which exceed the daily limit value of 50  $\mu$ g/m<sup>3</sup> for PM10. in accordance with LN 478/2010. PM2.5 values were not adjusted for Saharan dust contribution because of no data available from Għarb station.

| Name of laboratory carrying out sampling and measurement | AMBIENTE |
|----------------------------------------------------------|----------|
|                                                          |          |

Additional documentation to be submitted (if not identical to the submission in the previous month):



| Sampling location:                                                                   |                                     | Marsaxlokk                            |                                        |
|--------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------|----------------------------------------|
| Day                                                                                  | Date                                | PM <sub>10</sub> (μg/m <sup>3</sup> ) | PM <sub>2.5</sub> (μg/m <sup>3</sup> ) |
| Thursday                                                                             | 13/10/17                            | 30.29                                 | N.V.                                   |
| Friday                                                                               | 13/10/18                            | 31.68                                 | N.V.                                   |
| Saturday                                                                             | 13/10/19                            | 5.31                                  | N.V.                                   |
| Sunday                                                                               | 13/10/20                            | 12.63                                 | N.V.                                   |
| Monday                                                                               | 13/10/21                            | 12.94                                 | N.V.                                   |
| Tuesday                                                                              | 13/10/22                            | 15.38                                 | N.V.                                   |
| Wednesday                                                                            | 13/10/23                            | 13.55                                 | N.V.                                   |
| Thursday                                                                             | 13/10/24                            | 17.03                                 | 8.61                                   |
| Friday                                                                               | 13/10/25                            | 18.13                                 | 9.16                                   |
| Saturday                                                                             | 13/10/26                            | 15.56                                 | 10.45                                  |
| Sunday                                                                               | 13/10/27                            | 21.42                                 | 11.73                                  |
| Monday                                                                               | 13/10/28                            | 23.62                                 | 12.47                                  |
| Tuesday                                                                              | 13/10/29                            | 16.11                                 | 9.53                                   |
| Wednesday                                                                            | 13/10/30                            | 8.24                                  | 6.78                                   |
| Aver                                                                                 | age during reporting period         | 17.28                                 | 9.82                                   |
| Ave                                                                                  | rage during calendar year (to date) | 30.72                                 | 12.50                                  |
| Number of exceedances of daily limit value registered during calendar year (to date) |                                     | e 4                                   | 0                                      |

Note: in the table above underline measurements which exceed the daily limit value of 50  $\mu$ g/m<sup>3</sup> for PM10, in accordance with LN 478/2010. PM2.5 values were not adjusted for Saharan dust contribution because of no data available from Għarb station.

| Name of laboratory carrying out sampling and measurement | AMBIENTE |
|----------------------------------------------------------|----------|
|                                                          |          |

Additional documentation to be submitted (if not identical to the submission in the previous month):



| Sampling location: |                                                                                      | Birżebbuġa                            |                                        |
|--------------------|--------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------|
| Day                | Date                                                                                 | PM <sub>10</sub> (μg/m <sup>3</sup> ) | PM <sub>2.5</sub> (μg/m <sup>3</sup> ) |
| Thursday           | 13/10/17                                                                             | N.V.                                  | N.V.                                   |
| Friday             | 13/10/18                                                                             | 26.40                                 | 6.79                                   |
| Saturday           | 13/10/19                                                                             | 18.30                                 | 5.13                                   |
| Sunday             | 13/10/20                                                                             | 19.96                                 | 5.68                                   |
| Monday             | 13/10/21                                                                             | N.V.                                  | N.V.                                   |
| Tuesday            | 13/10/22                                                                             | 20.78                                 | 4.71                                   |
| Wednesday          | 13/10/23                                                                             | 17.94                                 | 1.83                                   |
| Thursday           | 13/10/24                                                                             | 20.05                                 | 7.91                                   |
| Friday             | 13/10/25                                                                             | 17.95                                 | 8.43                                   |
| Saturday           | 13/10/26                                                                             | 20.22                                 | 10.30                                  |
| Sunday             | 13/10/27                                                                             | 17.96                                 | 9.90                                   |
| Monday             | 13/10/28                                                                             | 20.72                                 | 12.47                                  |
| Tuesday            | 13/10/29                                                                             | 15.38                                 | 7.51                                   |
| Wednesday          | 13/10/30                                                                             | 15.56                                 | 5.86                                   |
|                    | Average during reporting period                                                      | 19.27                                 | 7.21                                   |
|                    | Average during calendar year (to date)                                               | 24.71                                 | 11.59                                  |
|                    | Number of exceedances of daily limit value registered during calendar year (to date) | 0                                     | 0                                      |

Note: in the table above underline measurements which exceed the daily limit value of  $50 \ \mu g/m^3$  for PM10, in accordance with LN 478/2010. PM2.5 values were not adjusted for Saharan dust contribution because of no data available from Gharb station.

| Name of laboratory carrying out sampling and measurement | AMBIENTE |
|----------------------------------------------------------|----------|
|                                                          |          |

Additional documentation to be submitted (if not identical to the submission in the previous month):



| Sampling location: |                                                                                            | Marsaxlokk                            |                                        |
|--------------------|--------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------|
| Day                | Date                                                                                       | ΡΜ <sub>10</sub> (μg/m <sup>3</sup> ) | PM <sub>2.5</sub> (μg/m <sup>3</sup> ) |
| Thursday           | 13/10/31                                                                                   | 13.59                                 | 2.95                                   |
| Friday             | 13/11/01                                                                                   | 15.75                                 | 4.40                                   |
| Saturday           | 13/11/02                                                                                   | 20.14                                 | 11.36                                  |
| Sunday             | 13/11/03                                                                                   | 18.31                                 | 2.20                                   |
| Monday             | 13/11/04                                                                                   | 18.49                                 | 2.75                                   |
| Tuesday            | 13/11/05                                                                                   | 32.59                                 | <1.83                                  |
| Wednesday          | 13/11/06                                                                                   | 32.65                                 | <1.83                                  |
| Thursday           | 13/11/07                                                                                   | 31.30                                 | 4.22                                   |
| Friday             | 13/11/08                                                                                   | 30.39                                 | <1.83                                  |
| Saturday           | 13/11/09                                                                                   | 23.62                                 | 2.93                                   |
| Sunday             | 13/11/10                                                                                   | 26.91                                 | 2.75                                   |
| Monday             | 13/11/11                                                                                   | 29.65                                 | <1.83                                  |
| Tuesday            | 13/11/12                                                                                   | 13.18                                 | <1.83                                  |
| Wednesday          | 13/11/13                                                                                   | 9.89                                  | 2.38                                   |
|                    | Average during reporting period                                                            | 22.60                                 | 3.22                                   |
|                    | Average during calendar year (to date)                                                     | 28.94                                 | 9.57                                   |
|                    | Number of exceedances of daily<br>limit value registered during<br>calendar year (to date) | 4                                     | 0                                      |

Note: in the table above underline measurements which exceed the daily limit value of  $50 \mu g/m^3$  for PM10, in accordance with LN 478/2010. PM2.5 values were not adjusted for Saharan dust contribution because of no data available from Gharb station.

Name of laboratory carrying out sampling and measurement AMBIENTE

Additional documentation to be submitted (if not identical to the submission in the previous month):



| Sampling location: |                                                                                            | Birżebbuġa                            |                                        |
|--------------------|--------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------|
| Day                | Date                                                                                       | ΡΜ <sub>10</sub> (μg/m <sup>3</sup> ) | PM <sub>2.5</sub> (μg/m <sup>3</sup> ) |
| Thursday           | 13/10/31                                                                                   | N.V.                                  | N.V.                                   |
| Friday             | 13/11/01                                                                                   | N.V.                                  | N.V.                                   |
| Saturday           | 13/11/02                                                                                   | 38.08                                 | 15.55                                  |
| Sunday             | 13/11/03                                                                                   | 10.07                                 | <1.83                                  |
| Monday             | 13/11/04                                                                                   | 22.00                                 | <1.83                                  |
| Tuesday            | 13/11/05                                                                                   | 14.64                                 | <1.83                                  |
| Wednesday          | 13/11/06                                                                                   | 17.24                                 | <1.83                                  |
| Thursday           | 13/11/07                                                                                   | 3.11                                  | <1.83                                  |
| Friday             | 13/11/08                                                                                   | 13.08                                 | <1.83                                  |
| Saturday           | 13/11/09                                                                                   | 8.97                                  | <1.83                                  |
| Sunday             | 13/11/10                                                                                   | 12.09                                 | <1.83                                  |
| Monday             | 13/11/11                                                                                   | 6.77                                  | <1.83                                  |
| Tuesday            | 13/11/12                                                                                   | 7.69                                  | <1.83                                  |
| Wednesday          | 13/11/13                                                                                   | 6.41                                  | <1.83                                  |
|                    | Average during reporting period                                                            | 13.35                                 | 2.98                                   |
|                    | Average during calendar year (to date)                                                     | 20.58                                 | 9.95                                   |
|                    | Number of exceedances of daily<br>limit value registered during<br>calendar year (to date) | 0                                     | 0                                      |

Note: in the table above underline measurements which exceed the daily limit value of  $50 \mu g/m^3$  for PM10, in accordance with LN 478/2010. PM2.5 values were not adjusted for Saharan dust contribution because of no data available from Gharb station.

| Name of laboratory carrying out sampling and measurement | AMBIENTE |
|----------------------------------------------------------|----------|
|                                                          |          |

Additional documentation to be submitted (if not identical to the submission in the previous month):



| Sampling location:                     |                                                                                 | Marsaxlokk                            |                                        |
|----------------------------------------|---------------------------------------------------------------------------------|---------------------------------------|----------------------------------------|
| Day                                    | Date                                                                            | PM <sub>10</sub> (μg/m <sup>3</sup> ) | PM <sub>2.5</sub> (μg/m <sup>3</sup> ) |
| Thursday                               | 13/11/14                                                                        | 26.17                                 | 13.59                                  |
| Friday                                 | 13/11/15                                                                        | 16.29                                 | 13.75                                  |
| Saturday                               | 13/11/16                                                                        | 13.91                                 | 10.64                                  |
| Sunday                                 | 13/11/17                                                                        | 12.09                                 | 6.97                                   |
| Monday                                 | 13/11/18                                                                        | 10.25                                 | 7.34                                   |
| Tuesday                                | 13/11/19                                                                        | 59.9                                  | 28.98                                  |
| Wednesday                              | 13/11/20                                                                        | 24.90                                 | 15.03                                  |
| Thursday                               | 13/11/21                                                                        | 15.19                                 | 3.30                                   |
| Friday                                 | 13/11/22                                                                        | 21.42                                 | 14.48                                  |
| Saturday                               | 13/11/23                                                                        | 40.09                                 | 25.10                                  |
| Sunday                                 | 13/11/24                                                                        | 4.95                                  | 4.58                                   |
| Monday                                 | 13/11/25                                                                        | 10.99                                 | 2.20                                   |
| Tuesday                                | 13/11/26                                                                        | 10.80                                 | 8.98                                   |
| Wednesday                              | 13/11/27                                                                        | 17.58                                 | 14.65                                  |
| Average during reporting period        |                                                                                 | 20.85                                 | 12.12                                  |
| Average during calendar year (to date) |                                                                                 | 27.49                                 | 10.04                                  |
|                                        | ber of exceedances of daily limit value<br>tered during calendar year (to date) | 5                                     | 0                                      |

Note: in the table above underline measurements which exceed the daily limit value of  $50 \mu g/m^3$  for PM10, in accordance with LN 478/2010. PM2.5 values were not adjusted for Saharan dust contribution because of no data available from Gharb station.

| Name of laboratory carrying out sampling and measurement | AMBIENTE |
|----------------------------------------------------------|----------|
|                                                          |          |

Additional documentation to be submitted (if not identical to the submission in the previous month):



| Sampling location: |                                                                   | Birżebbuġa                            |                                        |
|--------------------|-------------------------------------------------------------------|---------------------------------------|----------------------------------------|
| Day                | Date                                                              | PM <sub>10</sub> (μg/m <sup>3</sup> ) | PM <sub>2.5</sub> (μg/m <sup>3</sup> ) |
| Thursday           | 13/11/14                                                          | 10.12                                 | 4.22                                   |
| Friday             | 13/11/15                                                          | <1.83                                 | <1.83                                  |
| Saturday           | 13/11/16                                                          | 7.87                                  | <1.83                                  |
| Sunday             | 13/11/17                                                          | 6.95                                  | <1.83                                  |
| Monday             | 13/11/18                                                          | 15.01                                 | <1.83                                  |
| Tuesday            | 13/11/19                                                          | 66.82                                 | 12.08                                  |
| Wednesday          | 13/11/20                                                          | 28.55                                 | 2.01                                   |
| Thursday           | 13/11/21                                                          | 11.35                                 | <1.83                                  |
| Friday             | 13/11/22                                                          | 25.07                                 | <1.83                                  |
| Saturday           | 13/11/23                                                          | 10.98                                 | <1.83                                  |
| Sunday             | 13/11/24                                                          | 4.76                                  | <1.83                                  |
| Monday             | 13/11/25                                                          | 5.49                                  | <1.83                                  |
| Tuesday            | 13/11/26                                                          | 7.87                                  | 2.56                                   |
| Wednesday          | 13/11/27                                                          | 2.75                                  | 2.20                                   |
| Average dur        | ing reporting period                                              | 15.20                                 | 2.83                                   |
| Average dur        | ing calendar year (to date)                                       | 18.97                                 | 8.65                                   |
|                    | exceedances of daily limit value<br>uring calendar year (to date) | 1                                     | 0                                      |

Note: in the table above underline measurements which exceed the daily limit value of 50  $\mu$ g/m<sup>3</sup> for PM10. in accordance with LN 478/2010. PM2.5 values were not adjusted for Saharan dust contribution because of no data available from Gharb station.

| Name of laboratory carrying out sampling and measurement | AMBIENTE |
|----------------------------------------------------------|----------|
|                                                          |          |

Additional documentation to be submitted (if not identical to the submission in the previous month):



| Sampling location:                     |                                                                                    | Marsaxlokk                            |                                        |
|----------------------------------------|------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------|
| Day                                    | Date                                                                               | PM <sub>10</sub> (μg/m <sup>3</sup> ) | PM <sub>2.5</sub> (μg/m <sup>3</sup> ) |
| Thursday                               | 13/12/12                                                                           | N.V.                                  | N.V.                                   |
| Friday                                 | 13/12/13                                                                           | 32.78                                 | 20.70                                  |
| Saturday                               | 13/12/14                                                                           | 34.06                                 | 6.04                                   |
| Sunday                                 | 13/12/15                                                                           | 40.10                                 | 27.11                                  |
| Monday                                 | 13/12/16                                                                           | 26.97                                 | 15.99                                  |
| Tuesday                                | 13/12/17                                                                           | 22.15                                 | 13.37                                  |
| Wednesday                              | 13/12/18                                                                           | 25.09                                 | 15.21                                  |
| Thursday                               | 13/12/19                                                                           | 28.56                                 | 11.17                                  |
| Friday                                 | 13/12/20                                                                           | 8.60                                  | 2.75                                   |
| Saturday                               | 13/12/21                                                                           | 19.04                                 | 10.44                                  |
| Sunday                                 | 13/12/22                                                                           | 21.42                                 | 17.04                                  |
| Average during reporting period        |                                                                                    | 25.88                                 | 13.98                                  |
| Average during calendar year (to date) |                                                                                    | 27.22                                 | 10.65                                  |
|                                        | mber of exceedances of daily limit value<br>istered during calendar year (to date) | 5                                     | 0                                      |

Note: in the table above underline measurements which exceed the daily limit value of 50 μg/m<sup>3</sup> for PM10, in accordance with LN 478/2010. PM2.5 values were not adjusted for Saharan dust contribution because of no data available from Għarb station.

| Name of laboratory carrying out sampling and measurement | AMBIENTE |
|----------------------------------------------------------|----------|
|                                                          |          |

Additional documentation to be submitted (if not identical to the submission in the previous month):



| Sampling location:                                                                   |                           | Birżebbuġa                            |                                        |
|--------------------------------------------------------------------------------------|---------------------------|---------------------------------------|----------------------------------------|
| Day                                                                                  | Date                      | PM <sub>10</sub> (μg/m <sup>3</sup> ) | PM <sub>2.5</sub> (μg/m <sup>3</sup> ) |
| Thursday                                                                             | 13/12/12                  | N.V.                                  | N.V.                                   |
| Friday                                                                               | 13/12/13                  | 27.82                                 | 16.11                                  |
| Saturday                                                                             | 13/12/14                  | 24.71                                 | 15.56                                  |
| Sunday                                                                               | 13/12/15                  | 23.24                                 | 14.47                                  |
| Monday                                                                               | 13/12/16                  | 26.55                                 | 18.95                                  |
| Tuesday                                                                              | 13/12/17                  | 38.62                                 | 13.00                                  |
| Wednesday                                                                            | 13/12/18                  | 27.64                                 | 13.73                                  |
| Thursday                                                                             | 13/12/19                  | 23.79                                 | 14.64                                  |
| Friday                                                                               | 13/12/20                  | 12.81                                 | 9.34                                   |
| Saturday                                                                             | 13/12/21                  | 20.13                                 | 9.70                                   |
| Sunday                                                                               | 13/12/22                  | 39.91                                 | 10.07                                  |
| Averag                                                                               | e during reporting period | 26.52                                 | 13.56                                  |
| Average during calendar year (to date)                                               |                           | 20.17                                 | 9.22                                   |
| Number of exceedances of daily limit value registered during calendar year (to date) |                           | 1                                     | 0                                      |

Note: in the table above underline measurements which exceed the daily limit value of  $50 \mu g/m^3$  for PM10. in accordance with LN 478/2010. PM2.5 values were not adjusted for Saharan dust contribution because of no data available from Għarb station.

Name of laboratory carrying out sampling and measurement AMBIENTE

Additional documentation to be submitted (if not identical to the submission in the previous month):



| Sampling location:                     |                                                                         | Marsaxlokk                            |                                        |
|----------------------------------------|-------------------------------------------------------------------------|---------------------------------------|----------------------------------------|
| Day                                    | Date                                                                    | ΡΜ <sub>10</sub> (μg/m <sup>3</sup> ) | PM <sub>2.5</sub> (μg/m <sup>3</sup> ) |
| Monday                                 | 13/12/23                                                                | 13.64                                 | 12.29                                  |
| Tuesday                                | 13/12/24                                                                | 25.81                                 | 11.91                                  |
| Wednesday                              | 13/12/25                                                                | 23.98                                 | 13.56                                  |
| Thursday                               | 13/12/26                                                                | 31.86                                 | 11.91                                  |
| Friday                                 | 13/12/27                                                                | 21.97                                 | 12.64                                  |
| Saturday                               | 13/12/28                                                                | 38.28                                 | 17.59                                  |
| Sunday                                 | 13/12/29                                                                | 35.52                                 | 16.49                                  |
| Monday                                 | 13/12/30                                                                | 29.11                                 | 13.92                                  |
| Tuesday                                | 13/12/31                                                                | 23.67                                 | 10.18                                  |
| Wednesday                              | 14/01/01                                                                | 26.18                                 | 11.91                                  |
| Thursday                               | 14/01/02                                                                | 28.75                                 | 14.84                                  |
| Friday                                 | 14/01/03                                                                | 33.88                                 | 15.94                                  |
| Saturday                               | 14/01/04                                                                | 14.28                                 | 13.92                                  |
| Sunday                                 | 14/01/05                                                                | 26.18                                 | 11.36                                  |
| Monday                                 | 14/01/06                                                                | 18.31                                 | 10.26                                  |
| Average during reporting period        |                                                                         | 26.09                                 | 13.25                                  |
| Average during calendar year (to date) |                                                                         | 27.06                                 | 11.13                                  |
|                                        | of exceedances of daily limit value<br>d during calendar year (to date) | 5                                     | 0                                      |

Note: in the table above underline measurements which exceed the daily limit value of  $50 \mu g/m^3$  for PM10, in accordance with LN 478/2010. PM2.5 values were not adjusted for Saharan dust contribution because of no data available from Għarb station.

Name of laboratory carrying out sampling and measurement AMBIENTE

Additional documentation to be submitted (if not identical to the submission in the previous month):



| Sampling location:                                                                   |          | Birżebbuġa                            |                                        |
|--------------------------------------------------------------------------------------|----------|---------------------------------------|----------------------------------------|
| Day                                                                                  | Date     | PM <sub>10</sub> (μg/m <sup>3</sup> ) | PM <sub>2.5</sub> (μg/m <sup>3</sup> ) |
| Monday                                                                               | 13/12/23 | 18.52                                 | 8.83                                   |
| Tuesday                                                                              | 13/12/24 | 31.11                                 | 10.62                                  |
| Wednesday                                                                            | 13/12/25 | 18.12                                 | 10.25                                  |
| Thursday                                                                             | 13/12/26 | 27.09                                 | 8.79                                   |
| Friday                                                                               | 13/12/27 | 17.75                                 | 6.77                                   |
| Saturday                                                                             | 13/12/28 | 22.14                                 | 10.80                                  |
| Sunday                                                                               | 13/12/29 | 19.22                                 | 9.15                                   |
| Monday                                                                               | 13/12/30 | 19.22                                 | 10.43                                  |
| Tuesday                                                                              | 13/12/31 | 14.28                                 | 7.32                                   |
| Wednesday                                                                            | 14/01/01 | 18.48                                 | 8.24                                   |
| Thursday                                                                             | 14/01/02 | 23.80                                 | 12.44                                  |
| Friday                                                                               | 14/01/03 | 29.28                                 | 17.75                                  |
| Saturday                                                                             | 14/01/04 | N.V.                                  | N.V.                                   |
| Sunday                                                                               | 14/01/05 | N.V.                                  | N.V.                                   |
| Monday                                                                               | 14/01/06 | N.V.                                  | N.V.                                   |
| Average during reporting period                                                      |          | 21.58                                 | 10.12                                  |
| Average during calendar year (to date)                                               |          | 20.42                                 | 9.33                                   |
| Number of exceedances of daily limit value registered during calendar year (to date) |          | 1                                     | 0                                      |

Note: in the table above underline measurements which exceed the daily limit value of  $50 \mu g/m^3$  for PM10. in accordance with LN 478/2010. PM2.5 values were not adjusted for Saharan dust contribution because of no data available from Gharb station.

Name of laboratory carrying out sampling and measurement

AMBIENTE

Additional documentation to be submitted (if not identical to the submission in the previous month):

Accreditation certificate(s) of laboratory: ACCREDIA 510

**Ambient Air Quality Monitoring** 



| Sampling location:                     |                                                                    | Marsaxlokk   |               |
|----------------------------------------|--------------------------------------------------------------------|--------------|---------------|
| Day                                    | Date                                                               | PM10 (μg/m3) | PM2.5 (μg/m3) |
| Tuesday                                | 14/01/07                                                           | 20.5         | 12.53         |
| Wednesday                              | 14/01/08                                                           | 8.1          | 3.11          |
| Thursday                               | 14/01/09                                                           | 27.1         | 13.65         |
| Friday                                 | 14/01/10                                                           | 22.2         | 3.48          |
| Saturday                               | 14/01/11                                                           | 28.9         | 11.73         |
| Sunday                                 | 14/01/12                                                           | 31.9         | 11.92         |
| Monday                                 | 14/01/13                                                           | 28.4         | 11.00         |
| Tuesday                                | 14/01/14                                                           | 30.9         | 13.38         |
| Wednesday                              | 14/01/15                                                           | 24.9         | 11.92         |
| Thursday                               | 14/01/16                                                           | 37.2         | 16.87         |
| Friday                                 | 14/01/17                                                           | 20.70        | 5.68          |
| Saturday                               | 14/01/18                                                           | 13.82        | 17.24         |
| Sunday                                 | 14/01/19                                                           | 41.07        | 26.85         |
| Monday                                 | 14/01/20                                                           | 21.61        | 33.37         |
| Tuesday                                | 14/01/21                                                           | 21.61        | 2.57          |
| Average du                             | ring reporting period                                              | 42.29        | 13.43         |
| Average during calendar year (to date) |                                                                    | 29.06        | 11.43         |
|                                        | exceedances of daily limit value<br>luring calendar year (to date) | 5            | 0             |

Note: in the table above underline measurements which exceed the daily limit value of 50  $\mu$ g/m<sup>3</sup> for PM10, in accordance with LN 478/2010. PM2.5 values were not adjusted for Saharan dust contribution because of no data available from Għarb station.

Name of laboratory carrying out sampling and measurement

AMBIENTE

Additional documentation to be submitted (if not identical to the submission in the previous month):



| Sampling location:              |                                                                      | Birżebbuġa                            |                                        |
|---------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------|
| Day                             | Date                                                                 | PM <sub>10</sub> (μg/m <sup>3</sup> ) | PM <sub>2.5</sub> (μg/m <sup>3</sup> ) |
| Tuesday                         | 14/01/07                                                             | N.V.                                  | N.V.                                   |
| Wednesday                       | 14/01/08                                                             | 23.79                                 | 9.89                                   |
| Thursday                        | 14/01/09                                                             | 18.33                                 | 8.87                                   |
| Friday                          | 14/01/10                                                             | 19.40                                 | 7.69                                   |
| Saturday                        | 14/01/11                                                             | 24.71                                 | 7.69                                   |
| Sunday                          | 14/01/12                                                             | 22.70                                 | 6.41                                   |
| Monday                          | 14/01/13                                                             | 22.70                                 | 9.52                                   |
| Tuesday                         | 14/01/14                                                             | 12.45                                 | 11.90                                  |
| Wednesday                       | 14/01/15                                                             | 21.41                                 | 9.34                                   |
| Thursday                        | 14/01/16                                                             | 23.43                                 | 10.25                                  |
| Friday                          | 14/01/17                                                             | 18.85                                 | <1.83                                  |
| Saturday                        | 14/01/18                                                             | 23.75                                 | 20.88                                  |
| Sunday                          | 14/01/19                                                             | 11.13                                 | 27.64                                  |
| Monday                          | 14/01/20                                                             | 41.7                                  | 32.96                                  |
| Tuesday                         | 14/01/21                                                             | 10.25                                 | 9.88                                   |
| Average during reporting period |                                                                      | 40.28                                 | 13.30                                  |
| Average d                       | uring calendar year (to date)                                        | 23.86                                 | 9.79                                   |
|                                 | f exceedances of daily limit value<br>during calendar year (to date) | 1                                     | 0                                      |

Note: in the table above underline measurements which exceed the daily limit value of 50  $\mu$ g/m<sup>3</sup> for PM10. in accordance with LN 478/2010. PM2.5 values were not adjusted for Saharan dust contribution because of no data available from Għarb station.

AMBIENTE

Name of laboratory carrying out sampling and measurement

Additional documentation to be submitted (if not identical to the submission in the previous month):



| Sampling location:              |                                                                           | Marsaxlokk   |               |
|---------------------------------|---------------------------------------------------------------------------|--------------|---------------|
| Day                             | Date                                                                      | PM10 (μg/m3) | PM2.5 (μg/m3) |
| Wednesday                       | 14/01/22                                                                  | 23.10        | 7.55          |
| Thursday                        | 14/01/23                                                                  | 29.30        | 5.50          |
| Friday                          | 14/01/24                                                                  | 23.26        | 6.97          |
| Saturday                        | 14/01/25                                                                  | 17.02        | 7.52          |
| Sunday                          | 14/01/26                                                                  | 14.65        | 6.97          |
| Monday                          | 14/01/27                                                                  | 18.86        | 17.60         |
| Tuesday                         | 14/01/28                                                                  | 12.73        | 4.25          |
| Wednesday                       | 14/01/29                                                                  | 24.72        | 4.03          |
| Thursday                        | 14/01/30                                                                  | 23.64        | 15.41         |
| Friday                          | 14/01/31                                                                  | 45.66        | 44.20         |
| Saturday                        | 14/02/01                                                                  | 11.52        | 39.96         |
| Sunday                          | 14/02/02                                                                  | 26.37        | 1.83          |
| Monday                          | 14/02/03                                                                  | 21.43        | 6.41          |
| Tuesday                         | 14/02/04                                                                  | 28.57        | 17.05         |
| Wednesday                       | 14/02/05                                                                  | 21.24        | 5.68          |
| Average during reporting period |                                                                           | 22.80        | 12.73         |
| Average durin                   | g calendar year (to date)                                                 | 26.38        | 11.61         |
|                                 | of exceedances of daily limit value<br>red during calendar year (to date) | 5            | 0             |

Note: in the table above underline measurements which exceed the daily limit value of  $50 \mu g/m^3$  for PM10, in accordance with LN 478/2010. PM2.5 values were not adjusted for Saharan dust contribution because of no data available from Gharb station.

| Name of laboratory carrying out sampling and measurement | AMBIENTE |
|----------------------------------------------------------|----------|
|                                                          |          |

Additional documentation to be submitted (if not identical to the submission in the previous month):



| Sampling location:                                                                   |          | Birżebbuġa                            |                                        |
|--------------------------------------------------------------------------------------|----------|---------------------------------------|----------------------------------------|
| Day                                                                                  | Date     | PM <sub>10</sub> (μg/m <sup>3</sup> ) | PM <sub>2.5</sub> (μg/m <sup>3</sup> ) |
| Wednesday                                                                            | 14/01/22 | 6.96                                  | 6.64                                   |
| Thursday                                                                             | 14/01/23 | 19.24                                 | 8.60                                   |
| Friday                                                                               | 14/01/24 | 36.25                                 | 3.11                                   |
| Saturday                                                                             | 14/01/25 | 23.61                                 | 1.83                                   |
| Sunday                                                                               | 14/01/26 | 17.39                                 | 4.76                                   |
| Monday                                                                               | 14/01/27 | 20.68                                 | 5.49                                   |
| Tuesday                                                                              | 14/01/28 | 20.68                                 | 3.11                                   |
| Wednesday                                                                            | 14/01/29 | 13.18                                 | 1.83                                   |
| Thursday                                                                             | 14/01/30 | 23.61                                 | 14.65                                  |
| Friday                                                                               | 14/01/31 | 34.07                                 | 32.77                                  |
| Saturday                                                                             | 14/02/01 | 62.24                                 | 36.79                                  |
| Sunday                                                                               | 14/02/02 | 50.10                                 | 7.38                                   |
| Monday                                                                               | 14/02/03 | 40.94                                 | 5.31                                   |
| Tuesday                                                                              | 14/02/04 | 5.31                                  | 6.04                                   |
| Wednesday                                                                            | 14/02/05 | 24.71                                 | 6.64                                   |
| Average during reporting period                                                      |          | 27.21                                 | 9.66                                   |
| Average during calendar year (to date)                                               |          | 21.55                                 | 9.71                                   |
| Number of exceedances of daily limit value registered during calendar year (to date) |          | 2                                     | 0                                      |

Note: in the table above underline measurements which exceed the daily limit value of  $50 \mu g/m^3$  for PM10. in accordance with LN 478/2010. PM2.5 values were not adjusted for Saharan dust contribution because of no data available from Gharb station.

Name of laboratory carrying out sampling and measurement

AMBIENTE

Additional documentation to be submitted (if not identical to the submission in the previous month):



| Sampling location:                                                                   |          | Marsaxlokk   |               |
|--------------------------------------------------------------------------------------|----------|--------------|---------------|
| Day                                                                                  | Date     | PM10 (μg/m3) | PM2.5 (μg/m3) |
| Friday                                                                               | 14/02/07 | 26.54        | 9.89          |
| Saturday                                                                             | 14/02/08 | 31.50        | 9.71          |
| Sunday                                                                               | 14/02/09 | 35.72        | N.V.          |
| Monday                                                                               | 14/02/10 | 56.87        | N.V.          |
| Tuesday                                                                              | 14/02/11 | 27.65        | N.V.          |
| Wednesday                                                                            | 14/02/12 | 21.79        | N.V.          |
| Thursday                                                                             | 14/02/13 | 29.48        | N.V.          |
| Friday                                                                               | 14/02/14 | 28.02        | N.V.          |
| Saturday                                                                             | 14/02/15 | 24.18        | N.V.          |
| Sunday                                                                               | 14/02/16 | 23.07        | N.V.          |
| Monday                                                                               | 14/02/17 | 16.12        | N.V.          |
| Average during reporting period                                                      |          | 29.18        | 9.80          |
| Average during calendar year (to date)                                               |          | 26.59        | 11.58         |
| Number of exceedances of daily limit value registered during calendar year (to date) |          | 6            | 0             |

Note: in the table above underline measurements which exceed the daily limit value of  $50 \mu g/m^3$  for PM10, in accordance with LN 478/2010. PM2.5 values were not adjusted for Saharan dust contribution because of no data available from Gharb station.

Name of laboratory carrying out sampling and measurement

AMBIENTE

Additional documentation to be submitted (if not identical to the submission in the previous month):



| Sampling location:                                                                      |          | Birżebbuġa                            |                                        |
|-----------------------------------------------------------------------------------------|----------|---------------------------------------|----------------------------------------|
| Day                                                                                     | Date     | PM <sub>10</sub> (μg/m <sup>3</sup> ) | PM <sub>2.5</sub> (μg/m <sup>3</sup> ) |
| Friday                                                                                  | 14/02/07 | 21.78                                 | 5.49                                   |
| Saturday                                                                                | 14/02/08 | 25.99                                 | 9.15                                   |
| Sunday                                                                                  | 14/02/09 | 35.87                                 | 11.90                                  |
| Monday                                                                                  | 14/02/10 | 52.42                                 | 14.64                                  |
| Tuesday                                                                                 | 14/02/11 | 27.09                                 | 10.98                                  |
| Wednesday                                                                               | 14/02/12 | 25.80                                 | 7.50                                   |
| Thursday                                                                                | 14/02/13 | 25.07                                 | 2.93                                   |
| Friday                                                                                  | 14/02/14 | 24.52                                 | 10.06                                  |
| Saturday                                                                                | 14/02/15 | 24.52                                 | 9.70                                   |
| Sunday                                                                                  | 14/02/16 | 26.54                                 | 9.70                                   |
| Monday                                                                                  | 14/02/17 | 26.17                                 | 8.60                                   |
| Average during reporting period                                                         |          | 28.71                                 | 9.15                                   |
| Average during calendar year (to date)                                                  |          | 22.27                                 | 9.67                                   |
| Number of exceedances of daily limit value registered<br>during calendar year (to date) |          | 3                                     | 0                                      |

Note: in the table above underline measurements which exceed the daily limit value of 50  $\mu$ g/m<sup>3</sup> for PM10. in accordance with LN 478/2010. PM2.5 values were not adjusted for Saharan dust contribution because of no data available from Gharb station.

AMBIENTE

Name of laboratory carrying out sampling and measurement

Additional documentation to be submitted (if not identical to the submission in the previous month):



| Sampling location:                                                                   |          | Marsaxlokk   |               |
|--------------------------------------------------------------------------------------|----------|--------------|---------------|
| Day                                                                                  | Date     | PM10 (μg/m3) | PM2.5 (μg/m3) |
| Tuesday                                                                              | 14/02/18 |              |               |
| Wednesday                                                                            | 14/02/19 |              |               |
| Thursday                                                                             | 14/02/20 | 48.93        | 16.86         |
| Friday                                                                               | 14/02/21 | 46.71        | 15.94         |
| Saturday                                                                             | 14/02/22 | 35.04        | 13.74         |
| Sunday                                                                               | 14/02/23 | 49.64        | 12.64         |
| Monday                                                                               | 14/02/24 | 27.19        | 10.45         |
| Tuesday                                                                              | 14/02/25 | 29.93        | 12.46         |
| Wednesday                                                                            | 14/02/26 | 29.20        | 11.00         |
| Thursday                                                                             | 14/02/27 | 16.24        | 8.25          |
| Friday                                                                               | 14/02/28 | 17.71        | 9.16          |
| Saturday                                                                             | 14/03/01 | 15.69        | 15.39         |
| Sunday                                                                               | 14/03/02 | 18.43        | 9.89          |
| Monday                                                                               | 14/03/03 | 15.33        | 7.51          |
| Tuesday                                                                              | 14/03/04 | 22.26        | 8.06          |
| Average during reporting period                                                      |          | 28.64        | 11.64         |
| Average during calendar year (to date)                                               |          | 26.76        | 11.58         |
| Number of exceedances of daily limit value registered during calendar year (to date) |          | 6            | 0             |

Note: in the table above underline measurements which exceed the daily limit value of  $50 \mu g/m^3$  for PM10, in accordance with LN 478/2010. PM2.5 values were not adjusted for Saharan dust contribution because of no data available from Gharb station.

| Name of laboratory carrying out sampling and measurement | AMBIENTE |
|----------------------------------------------------------|----------|
|                                                          |          |

Additional documentation to be submitted (if not identical to the submission in the previous month):



| Sampling location:                                                                   |          | Birżebbuġa                            |                                        |
|--------------------------------------------------------------------------------------|----------|---------------------------------------|----------------------------------------|
| Day                                                                                  | Date     | PM <sub>10</sub> (μg/m <sup>3</sup> ) | PM <sub>2.5</sub> (μg/m <sup>3</sup> ) |
| Tuesday                                                                              | 14/02/18 |                                       |                                        |
| Wednesday                                                                            | 14/02/19 |                                       |                                        |
| Thursday                                                                             | 14/02/20 |                                       |                                        |
| Friday                                                                               | 14/02/21 |                                       |                                        |
| Saturday                                                                             | 14/02/22 |                                       |                                        |
| Sunday                                                                               | 14/02/23 |                                       |                                        |
| Monday                                                                               | 14/02/24 |                                       |                                        |
| Tuesday                                                                              | 14/02/25 |                                       |                                        |
| Wednesday                                                                            | 14/02/26 |                                       |                                        |
| Thursday                                                                             | 14/02/27 |                                       |                                        |
| Friday                                                                               | 14/02/28 |                                       |                                        |
| Saturday                                                                             | 14/03/01 |                                       |                                        |
| Sunday                                                                               | 14/03/02 |                                       |                                        |
| Monday                                                                               | 14/03/03 |                                       |                                        |
| Tuesday                                                                              | 14/03/04 |                                       |                                        |
| Average during reporting period                                                      |          | 26.89                                 | 11.75                                  |
| Average during calendar year (to date)                                               |          | 22.51                                 | 9.73                                   |
| Number of exceedances of daily limit value registered during calendar year (to date) |          | 4                                     | 0                                      |

Note: in the table above underline measurements which exceed the daily limit value of 50  $\mu$ g/m<sup>3</sup> for PM10. in accordance with LN 478/2010. PM2.5 values were not adjusted for Saharan dust contribution because of no data available from Għarb station.

| Name of laboratory carrying out sampling and measurement | AMBIENTE |
|----------------------------------------------------------|----------|

Additional documentation to be submitted (if not identical to the submission in the previous month):



| Sampling location:                                                                   |          | Marsaxlokk   | Marsaxlokk    |  |
|--------------------------------------------------------------------------------------|----------|--------------|---------------|--|
| Day                                                                                  | Date     | PM10 (μg/m3) | PM2.5 (μg/m3) |  |
| Wednesday                                                                            | 14/03/05 |              |               |  |
| Thursday                                                                             | 14/03/06 |              |               |  |
| Friday                                                                               | 14/03/07 | 24.18        | 9.90          |  |
| Saturday                                                                             | 14/03/08 | 17.22        | 3.12          |  |
| Sunday                                                                               | 14/03/09 | 15.39        | 7.15          |  |
| Monday                                                                               | 14/03/10 | 22.17        | 1.83          |  |
| Tuesday                                                                              | 14/03/11 | 32.06        | 12.64         |  |
| Wednesday                                                                            | 14/03/12 | 20.70        | 12.09         |  |
| Thursday                                                                             | 14/03/13 | 20.88        | 4.03          |  |
| Friday                                                                               | 14/03/14 | 39.56        | 15.58         |  |
| Saturday                                                                             | 14/03/15 | 28.39        | 9.16          |  |
| Sunday                                                                               | 14/03/16 | 38.64        | 19.80         |  |
| Monday                                                                               | 14/03/17 | 42.87        | 5.32          |  |
| Tuesday                                                                              | 14/03/18 | 45.61        | 22.92         |  |
| Wednesday                                                                            | 14/03/19 | 34.80        | 17.60         |  |
| Average during reporting period                                                      |          | 29.42        | 10.86         |  |
| Average during calendar year (to date)                                               |          | 26.99        | 11.51         |  |
| Number of exceedances of daily limit value registered during calendar year (to date) |          | 0            | 0             |  |

Note: in the table above underline measurements which exceed the daily limit value of  $50 \ \mu g/m^3$  for PM10, in accordance with LN 478/2010. PM2.5 values were not adjusted for Saharan dust contribution because of no data available from Gharb station.

Name of laboratory carrying out sampling and measurement AMBIENTE

Additional documentation to be submitted (if not identical to the submission in the previous month):



| Sampling location:                                                                   |          | Birżebbuġa                            |                                        |
|--------------------------------------------------------------------------------------|----------|---------------------------------------|----------------------------------------|
| Day                                                                                  | Date     | PM <sub>10</sub> (μg/m <sup>3</sup> ) | PM <sub>2.5</sub> (μg/m <sup>3</sup> ) |
| Wednesday                                                                            | 14/03/05 |                                       |                                        |
| Thursday                                                                             | 14/03/06 |                                       |                                        |
| Friday                                                                               | 14/03/07 | 23.97                                 | 11.17                                  |
| Saturday                                                                             | 14/03/08 | 18.48                                 | <1.83                                  |
| Sunday                                                                               | 14/03/09 | 15.01                                 | 10.25                                  |
| Monday                                                                               | 14/03/10 | 25.25                                 | 9.15                                   |
| Tuesday                                                                              | 14/03/11 | 25.26                                 | 11.35                                  |
| Wednesday                                                                            | 14/03/12 | 18.66                                 | 9.52                                   |
| Thursday                                                                             | 14/03/13 | 25.08                                 | 5.31                                   |
| Friday                                                                               | 14/03/14 | 55.47                                 | 17.21                                  |
| Saturday                                                                             | 14/03/15 | 38.07                                 | 11.90                                  |
| Sunday                                                                               | 14/03/16 | 37.52                                 | 20.69                                  |
| Monday                                                                               | 14/03/17 | 41.73                                 | 19.59                                  |
| Tuesday                                                                              | 14/03/18 | 41.00                                 | 9.88                                   |
| Wednesday                                                                            | 14/03/19 | 17.14                                 | 16.77                                  |
| Average during reporting period                                                      |          | 28.57                                 | 12.73                                  |
| Average during calendar year (to date)                                               |          | 23.16                                 | 9.95                                   |
| Number of exceedances of daily limit value registered during calendar year (to date) |          | 5                                     | 0                                      |

Note: in the table above underline measurements which exceed the daily limit value of  $50 \mu g/m^3$  for PM10. in accordance with LN 478/2010. PM2.5 values were not adjusted for Saharan dust contribution because of no data available from Gharb station.

| Name of laboratory carrying out sampling and measurement | AMBIENTE |
|----------------------------------------------------------|----------|
|                                                          |          |

Additional documentation to be submitted (if not identical to the submission in the previous month):



| Sampling location:                                                                   |          | Marsaxlokk   | Marsaxlokk    |  |
|--------------------------------------------------------------------------------------|----------|--------------|---------------|--|
| Day                                                                                  | Date     | PM10 (μg/m3) | PM2.5 (μg/m3) |  |
| Thursday                                                                             | 14/03/20 | 33.68        | 16.90         |  |
| Friday                                                                               | 14/03/21 | 24.18        | 15.77         |  |
| Saturday                                                                             | 14/03/22 | 25.83        | 8.98          |  |
| Sunday                                                                               | 14/03/23 | 23.99        | <1.83         |  |
| Monday                                                                               | 14/03/24 | 24.92        | 8.99          |  |
| Tuesday                                                                              | 14/03/25 | 25.09        | 8.25          |  |
| Wednesday                                                                            | 14/03/26 | 24.73        | 7.33          |  |
| Thursday                                                                             | 14/03/27 | 27.46        | 5.68          |  |
| Friday                                                                               | 14/03/28 | 25.46        | 8.44          |  |
| Saturday                                                                             | 14/03/29 | 17.77        | 6.78          |  |
| Sunday                                                                               | 14/03/30 | 25.09        | 11.00         |  |
| Monday                                                                               | 14/03/31 | 26.75        | 13.94         |  |
| Tuesday                                                                              | 14/03/01 | 26.74        | 16.51         |  |
| Wednesday                                                                            | 14/03/02 | 33.69        | 16.13         |  |
| Average during reporting period                                                      |          | 26.10        | 11.13         |  |
| Average during calendar year (to date)                                               |          | 26.92        | 11.48         |  |
| Number of exceedances of daily limit value registered during calendar year (to date) |          |              | 0             |  |

Note: in the table above underline measurements which exceed the daily limit value of  $50 \ \mu g/m^3$  for PM10, in accordance with LN 478/2010. PM2.5 values were not adjusted for Saharan dust contribution because of no data available from Gharb station.

| Name of laboratory carrying out sampling and measurement | AMBIENTE |
|----------------------------------------------------------|----------|
|                                                          |          |

Additional documentation to be submitted (if not identical to the submission in the previous month):



| Sampling location:                                                                   |          | Birżebbuġa                            |                                        |
|--------------------------------------------------------------------------------------|----------|---------------------------------------|----------------------------------------|
| Day                                                                                  | Date     | PM <sub>10</sub> (μg/m <sup>3</sup> ) | PM <sub>2.5</sub> (μg/m <sup>3</sup> ) |
| Thursday                                                                             | 14/03/20 | 29.77                                 | 25.01                                  |
| Friday                                                                               | 14/03/21 | 23.07                                 | 14.65                                  |
| Saturday                                                                             | 14/03/22 | 25.26                                 | 12.81                                  |
| Sunday                                                                               | 14/03/23 | 27.82                                 | 10.80                                  |
| Monday                                                                               | 14/03/24 | 27.08                                 | 7.32                                   |
| Tuesday                                                                              | 14/03/25 | 25.92                                 | 7.91                                   |
| Wednesday                                                                            | 14/03/26 | 23.98                                 | 6.77                                   |
| Thursday                                                                             | 14/03/27 | 40.44                                 | 10.81                                  |
| Friday                                                                               | 14/03/28 | 21.78                                 | <1.83                                  |
| Saturday                                                                             | 14/03/29 | 6.59                                  | 5.86                                   |
| Sunday                                                                               | 14/03/30 | 34.59                                 | 11.17                                  |
| Monday                                                                               | 14/03/31 | 32.40                                 | 13.36                                  |
| Tuesday                                                                              | 14/03/01 | 26.90                                 | 14.09                                  |
| Wednesday                                                                            | 14/03/02 | 34.23                                 | 20.50                                  |
| Average during reporting period                                                      |          | 27.13                                 | 12.39                                  |
| Average during calendar year (to date)                                               |          | 23.61                                 | 10.13                                  |
| Number of exceedances of daily limit value registered during calendar year (to date) |          | 5                                     | 0                                      |

Note: in the table above underline measurements which exceed the daily limit value of  $50 \mu g/m^3$  for PM10. in accordance with LN 478/2010. PM2.5 values were not adjusted for Saharan dust contribution because of no data available from Gharb station.

| Name of laboratory carrying out sampling and measurement | AMBIENTE |
|----------------------------------------------------------|----------|
|                                                          |          |

Additional documentation to be submitted (if not identical to the submission in the previous month):

